Geometry_of_Single_point_Turning_Tools_and_Drills
本帖最后由 机器鼠 于 2011-6-23 23:18 编辑Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Applications.pdf
有要的吗?刀具,细节,很到位。英文版。
国内无人这么细研究的吧? 说什么的? Although almost any book and/or text on metal cutting, cutting tool design, and
manufacturing process discusses to a certain extent the tool geometry, the body of
knowledge on the subject is scattered andconfusing. Moreover, there is no clear
objective(s) set in the selection of the tool geometry parameters so that an answer
to a simple question about optimal tool geometry cannot be found in the literature
on the subject. This is because a criterion (criteria) of optimization is not clear, on
one hand, and because the role of cutting tool geometry in machining process
optimization has never been studied systematically, on the other. As a result, many
practical tool/process designers are forced to use extremely vague ranges of tool
geometry parameters provided by handbooks. Being at least 20+ years outdated,
these data do not account for any particularities of a machining operation including
a particular grade of tool material, the condition of the machine used, the cutting
fluid, properties and metallurgical condition of the work material, requirements to
the integrity of the machined surface, etc.
Unfortunately, while today's professionals, practitioners, and students are
interested in cutting tool geometry, they are doomed to struggle with the confusing
terminology. When one does not know what the words (terms) mean, it is easy to
slip into thinking that the matter is difficult, when actually the ideas are simple,
easy to grasp, and fun to consider. It is the terms that get in the way, that stand as a
wall between many practitioners and science. This books attempts to turn those
walls into windows, so that readers can peer in and join in the fun of proper tool
design.
So, why am I writing this book? There are a few reasons, but first and foremost,
because I am a true believer in what we call technical literacy. I believe that
everyone involved in the metal cutting business should understand the essence and
importance of cutting tool geometry. In my opinion, this understanding is key to
improving efficiency of practically all machining operations. For the first time, this
book presents and explains the direct correlations between tool geometry and tool
performance. The second reason is that I felt that there is no comprehensive book
on the subject so professionals, practitioners, and students do not have a text from
which to learn more on the subject and thus appreciate the real value of tool
geometry. Finally, I wanted to share the key elements of tool geometry that I felt
were not broadly understood and thus used in the tool design practice and in
optimization of machining operations in industry. Moreover, being directly
involved in the launch of many modern manufacturing facilities equipped with
state-of-the-art high-precision machines, I found that the cutting tool industry is not
ready to meet the challenge of modern metal cutting applications. One of the key
issues is the definite lack of understanding of the basics of tool geometry of
standard and application-specific tools.
The lack of information on cutting tool geometry and its influence on the
outcome of machining operations can be explained as follows. Many great findings
on tool geometry were published a long time ago when neither CNC grinding
machines capable of reproducing any kind of tool geometry were available nor
were computers to calculate parameters of such geometry (using numerical
methods) common. Manual grinding using standard 2- and 3-axis simple grinding
features was common so the major requirement for tool geometry was the simpler
the better. Moreover, old, insufficiently rigid machines, aged tool holders and part
fixtures, and poor metal working fluid (MWF) selection and maintenance levered
any advancement in tool geometry as its influence could not be distinguished under
these conditions. Besides, a great scatter in the properties of tool materials in the
past did not allow distinguishing of the true influence of tool geometry. As a result,
studies on tool geometry were reduced totheoretical considerations of features of
twist drills and some gear manufacturingtools such as hobs, shaving cutters,
shapers, etc.
Gradually, once mighty chapters on tool geometry in metal cutting and tool
design books were reduced to sections of few pages where no correlation between
tool geometry and tool performance is normally considered. What is left is a
general perception that the so-called “positive geometry” is somehow better than
“negative geometry.” As such, there is no quantitative translation of the word
“better” into the languageof technical data although a great number of articles
written in many professional magazines discuss the qualitative advantages of
“positive geometry.” For example, one popular manufacturing magazine article
read “Negative rake tools have a muchstronger leading edge and tend to push
against the workpiece in the direction of the cutter feed. This geometry is less free
cutting than positive rakes and so consumes more horsepower to cut.” Reading
these articles one may wonder why cutting tool manufacturers did not switch their
tool designs completely to this mysterious “positive geometry” or why some of
them still investigate and promote negative geometry.
During recent decades, the metalworking industry underwent several important
changes that should bring cutting tool geometry into the forefront of tool design
and implementation: 1 What Does It Mean “Metal Cutting”? ...........................................................1
1.1 Introduction ...............................................................................................1
1.2 Known Results and Comparison with Other Forming Processes ..............2
1.2.1 Single-shear Plane Model of Metal Cutting ...................................2
1.2.2 Metal Cutting vs. Other Closely Related Manufacturing
Operations .................................................................................................5
1.3 What Went Wrong in the Representation of Metal Cutting?...................22
1.3.1 Force Diagram..............................................................................23
1.3.2 Resistance of the Work Material in Cutting.................................25
1.3.3 Comparison of the Known Solutions for the Single-shear
Plane Model with Experimental Results .................................................27
1.4 What is Metal Cutting?............................................................................28
1.4.1 Importance to Know the Right Answer........................................28
1.4.2Definition .....................................................................................28
1.4.3 Relevance to the Cutting Tool Geometry.....................................29
1.5 Fundamental Laws of Metal Cutting.......................................................32
1.5.1 Optimal Cutting Temperature – Makarow’s Law........................32
1.5.2Deformation Law.........................................................................35
References........................................................................................................50
2 Basic Definitions and Cutting Tool Geometry,
Single Point Cutting Tools ............................................................................55
2.1 Basic Terms and Definitions ...................................................................55
2.1.1Workpiece Surfaces.......................................................................57
2.1.2Tool Surfaces and Elements ..........................................................57
2.1.3Tool and Workpiece Motions.......................................................57
2.1.4Types of Cutting ............................................................................58
2.2 Cutting Tool Geometry Standards...........................................................60
2.3 Systems of Consideration of Tool Geometry ..........................................61
2.4.Tool-in-hand System (T-hand-S) .......................................................64
2.4.1 Tool-in-hand Coordinate System.................................................64
2.4.2References Planes ........................................................................66
2.4.3Tool Angles..................................................................................68
2.4.4 Geometry of Cutting Tools with Indexable Inserts ......................74
2.5 Tool-in-machine System (T-mach-S)......................................................84
2.5.1Angles ..........................................................................................84
2.5.2 Example 2.3 .................................................................................88
2.6 Tool-in-use System (T-use-S) .................................................................90
2.6.1Reference Planes ..........................................................................91
2.6.2The Concept .................................................................................92
2.6.3 Modification of the T-hand-S Cool Geometry .............................92
2.6.4 Kinematic Angles.........................................................................98
2.6.5 Example 2.4 ...............................................................................100
2.7 Avalanched Representation of the Cutting Tool Geometry
in T-hand-S............................................................................................102
2.7.1Basic Tool Geometry .................................................................102
2.7.2 Determination of Cutting Tool Angles Relation
for a Wiper Cutting Insert ..........................................................108
2.7.3 Determination of Cutting Tool Angles
for a Single-point Tool ...............................................................110
2.7.4 Flank Angles of a Dovetail Forming Tool .................................117
2.7.5 Summation of Several Motions..................................................119
References......................................................................................................125
3Fundamentals of the Selection of Cutting Tool Geometry Parameters...127
3.1 Introduction ...........................................................................................127
3.2 General Considerations in the Selection of Parameters
of Cutting Tool Geometry .....................................................................129
3.2.1 Known Results .............................................................................129
3.2.2 Ideal Tool Geometry and Constrains............................................130
3.2.3 Practical Gage for Experimental Evaluation of Tool Geometry...132
3.3 Tool Cutting Edge Angles .....................................................................132
3.3.1General Consideration................................................................132
3.3.2 Uncut ChipT in Non-free Cutting ..............................................134
3.3.3 Influence on the Surface Finish..................................................142
3.3.4Tools with κr > 90°.....................................................................144
3.3.5 Tool Minor Cutting Edge Angle ................................................147
3.4.Edge Preparation ...................................................................................161
3.4.1General .......................................................................................161
3.4.2 Shape and Extent........................................................................163
3.4.3Limitations .................................................................................163
3.4.4 What Edge Preparation Actually Does.......................................169
3.5 Rake Angle............................................................................................171
3.5.1Introduction................................................................................171
3.5.2 Influence on Plastic Deformation and Generazliations ..............175
3.5.3 Effective Rake Angle .................................................................183
3.5.4 Conditions for Using High Rake Angles....................................189
3.6 Flank Angle ...........................................................................................191
3.7 Inclination Angle...................................................................................193
3.7.1 Turning with Rotary Tools.........................................................195
3.7.2Helical Treading Taps and Broaches..........................................197
3.7.3Milling Tools..............................................................................198
References......................................................................................................201
4 Straight Flute and Twist Drills ...................................................................205
4.1 Introduction ...........................................................................................205
4.2 Classification.........................................................................................206
4.3 Basic Terms...........................................................................................208
4.4 System Approach ..................................................................................211
4.4.1System Objective .......................................................................212
4.4.2Understanding the Drilling System............................................212
4.4.3.Understanding the Tool..............................................................212
4.5.Force System Constrains on the Drill Penetration Rate ........................213
4.5.1 Force-balance Problem in Conventional Drills ..........................213
4.5.2 Constrains on the Drill Penetration Rate....................................218
4.5.3Drilling Torque ..........................................................................219
4.5.4Axial Force.................................................................................220
4.5.5 Axial Force (Thrust)-torque Coupling .......................................221
4.6 Drill Point ..............................................................................................223
4.6.1Basic Classifications ..................................................................223
4.6.2 Tool Geometry Measures to Increase the Allowable
Penetration Rate ....................................................................................224
4.7 Common Design and Manufacturing Flaws..........................................259
4.7.1 Web Eccentricity/ Lip Index Error.............................................260
4.7.2 Poor Surface Finish and Improper Tool Material/Hardness.......261
4.7.3Coolant Hole Location and Size.................................................263
4.8 Tool Geometry ......................................................................................267
4.8.1 Straight-flute and Twist Drills Particularities............................269
4.8.2 Geometry of the Typical Drill Point ..........................................270
4.8.3 Rake Angle.................................................................................272
4.8.4Inclination Angle .........................................................................280
4.8.5Flank Angle................................................................................281
4.8.6 Geometry of a Cutting Edge Located at an Angle
to the y0-plane ............................................................................292
4.8.7Chisel Edge ................................................................................295
4.8.8 Drill Flank is Formed by Two Planes: Generalization...............306
4.8.9 Drill Flank Angle Formed by Three Planes ...............................310
4.8.10Flank Formed by Quadratic Surfaces.........................................313
4.9 Load Over the Drill Cutting Edge .........................................................324
4.9.1 Uncut Chip Thickness in Drilling ..............................................325
4.9.2 Load Distribution Over the Cutting Edge ..................................327
4.10Drills with Curved and Segmented Cutting Edges ................................328
4.10.1 Load of the Cutting Part of a Drill with Curved Cutting Edges .329
4.10.2 Rake Angle.................................................................................332
References......................................................................................................337
5 Deep-hole Tools............................................................................................341
5.1 Introduction ...........................................................................................341
5.2 Generic Classification of Deep-hole Machining Operations.................343
5.3 What Does ‘Self-piloting Tool’ Mean? .................................................345
5.3.1 Force Balance in Self-piloting Tools..........................................345
5.4 Three Basic Kinematic Schemes of Drilling .........................................350
5.4.1 Gundrill Rotates and the Workpiece is Stationary .....................351
5.4.2Workpiece Rotates and the Gundrill is Stationary .....................352
5.4.3Counterrotation ..........................................................................352
5.5 System Approach ..................................................................................353
5.5.1 Handling Tool Failure ................................................................353
5.5.2System Considerations ...............................................................354
5.6 Gundrills................................................................................................362
5.6.1Basic Geometry..........................................................................362
5.6.2Rake Surface ..............................................................................365
5.6.3 Geometry of Major Flanks .........................................................370
5.6.4System Considerations in Gundrill Design ................................390
5.6.5 Examplification of Significance of the High MWF Pressure
in the Bottom Clearance Space ..................................................423
5.6.6 Example of Experimental Study ................................................425
5.6.7 Optimization of Tool Geometry.................................................439
References......................................................................................................440
Appendix A
Basic Kinematics of Turning and Drilling.......................................................443
A.1 Introduction ...........................................................................................443
A.2Turning and Boring ...............................................................................444
A.2.1Basic Motions in Turning...........................................................444
A.2.2Cutting Speed in Turning and Boring ........................................448
A.2.3Feed and Feed Rate ....................................................................448
A.2.4Depth of Cut...............................................................................449
A.2.5Material Removal Rate ..............................................................449
A.2.6Resultant Motion........................................................................450
A.3Drilling and Reaming ............................................................................450
A.3.1Basic Motions in Drilling...........................................................450
A.3.2Machining Regime.....................................................................451
A.4Cutting Force and Power .......................................................................453
A.4.1Force System in Metal Cutting...................................................453
A.4.2Cutting Power ............................................................................454
A.4.3Practical Assessment of the Cutting Force.................................455
References......................................................................................................461
Appendix B
ANSI and ISO Turning Indexable Inserts and Holders.................................463
B.1 Indexable Inserts ...................................................................................463
B.1.1ANSI Code .................................................................................464
B.1.2ISO Code....................................................................................471
B.2 Tool Holders for Indexable Inserts (Single Point Tools) ......................491
B.2.1 Symbol for the Method of Holding Horizontally Mounted
Insert – Reference Position (1) ..............................................................492
B.2.2 Symbol for Insert Shape – Reference Position (2) .....................493
B.2.3 Symbol for Tool Style – Reference Position (3) ........................493
B.2.4 Letter Symbol Identifying Insert Normal Clearance –
Reference Position (4)................................................................494
B.2.5 Symbol for Tool Hand – Reference position (5) ........................494
B.2.6Symbol for Tool Height (Shank Height of Tool Holders
and Height of Cutting Edge) - Reference Position (6) ...............494
B.2.7Number Symbol Identifying Tool Holder Shank Width –
Reference Position (7)................................................................495
B.2.8Number Symbol Identifying Tool Length –
Reference Position (8)................................................................495
B.2.9 Letter Symbol Identifying Indexable Insert Size –
Reference Position (9)................................................................497
Appendix C
Basics of Vector Analysis ..................................................................................499
C.1 Vectors and Scalars ...............................................................................499
C.2 Definition and Representation...............................................................500
C.2.1Definitions..................................................................................500
C.2.2Basic Vector Operations ............................................................503
C.3 Application Conveniences.....................................................................509
C.4Rotation: Linear and Angular Velocities...............................................511
C.4.1 Planar Linear and Angular Velocities ........................................511
C.4.2 Rotation: The Angular Velocity Vector .....................................515
References ...........................................................................................................518
Appendix D
Hydraulic Losses: Basics and Gundrill Specifics............................................519
D.1Hydraulic Pressure Losses – General ....................................................519
D.1.1Major Losses: Friction Factor ....................................................520
D.1.2Minor Losses (Losses Due to Form Resistance) ........................521
D.2Concept of the Critical MWF Velocity and Flow Rate .........................521
D.2.1MWF Flow Rate Needed for Reliable Chip Transportation.......522
D.2.3Example D.1...............................................................................527
D.3 Inlet MWF pressure...............................................................................528
D.4Analysis of Hydraulic Resistances ........................................................532
D.4.1Analysis of Hydraulic Resistances Over Which the Designer
Has No or Little Control ............................................................532
D.4.2Variable Resistances Over Which the Designer Has Control ....535
D.5 Practical Implementation in the Drill Design ........................................539
References ..........................................................................................................543
Appendix E
Requirements and Examples of Cutting Tool Drawings................................545
E.1 Introduction ...........................................................................................545
E.2 Tool Drawings – the Existent Practice ..................................................546
E.3 Tool Drawing Requrements ..................................................................548
E.4 Examples of Tool Drawing ...................................................................553
References ..........................................................................................................559
Index…………………………………………………………………………….561
都是些神马? 埋头挖矿中。。。。。。。。。 好东西啊。。。只是,刀具不是我的工作。。。顶起,不沉。。。 专业人士自有看法。 好东西啊,英文的,看着太费劲了 从网上查找这本书是Springer Series in Advanced Manufacturing丛书中的一本
请问这套丛书共包含哪几本书
页:
[1]
2