机械社区

 找回密码
 注册会员

QQ登录

只需一步,快速开始

搜索
查看: 8360|回复: 19

Geometry_of_Single_point_Turning_Tools_and_Drills

[复制链接]
发表于 2011-6-23 22:58:22 | 显示全部楼层 |阅读模式
本帖最后由 机器鼠 于 2011-6-23 23:18 编辑
& ?  Z/ F! I- g; J. ?5 T1 F! K* R' B- s' I: `4 ]5 K
Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Applications.pdf8 _+ V$ `1 }9 W& I
有要的吗?刀具,细节,很到位。英文版。
# z4 S, s$ G3 I; F国内无人这么细研究的吧?

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 阅读权限: 90, 下载次数: 8, 下载积分: 威望 -10 点

7

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 7, 下载积分: 威望 -10 点

6

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 8, 下载积分: 威望 -10 点

5

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

4

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

3

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

2

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

140.75 KB, 阅读权限: 90, 下载次数: 7, 下载积分: 威望 -10 点

1

回复

使用道具 举报

发表于 2011-6-24 19:17:16 | 显示全部楼层
说什么的?
回复 支持 反对

使用道具 举报

 楼主| 发表于 2011-6-24 22:02:25 | 显示全部楼层
Although almost any book and/or text on metal cutting, cutting tool design, and ' f3 @3 H% F5 r: y& D, E. t4 I# B9 K
manufacturing process discusses to a certain extent the tool geometry, the body of
5 w$ M8 r2 @+ k9 I* f9 z/ hknowledge on the subject is scattered and  confusing. Moreover, there is no clear 0 S7 v$ O  t  U: F! R, |
objective(s) set in the selection of the tool geometry parameters so that an answer
% B8 K' U4 b! ~% r$ p# u! a& ^$ |to a simple question about optimal tool geometry cannot be found in the literature
' R" D3 z) M! H$ A. d; o% a; eon the subject. This is because a criterion (criteria) of optimization is not clear, on
9 S5 N; |- C4 W5 [, [one hand, and because the role of cutting tool geometry in machining process 8 F0 ^# t) [" N+ p4 @7 Y
optimization has never been studied systematically, on the other. As a result, many
* h1 Z  U: \5 p- ~. P) \practical tool/process designers are forced to use extremely vague ranges of tool 1 ~9 B2 G0 e! h' h, i: n: P
geometry parameters provided by handbooks. Being at least 20+ years outdated,
0 H+ N& o% ]+ n5 _these data do not account for any particularities of a machining operation including
! _$ N( {, d, E, Ea particular grade of tool material, the condition of the machine used, the cutting & I- H8 R- W8 W' m
fluid, properties and metallurgical condition of the work material, requirements to
; N' ~' B- U8 _/ J/ D4 }4 Fthe integrity of the machined surface, etc. ( {% H2 z) x3 `+ C; o" a
Unfortunately, while today's professionals, practitioners, and students are * B7 W# m' q8 E* o4 M" w; T$ g
interested in cutting tool geometry, they are doomed to struggle with the confusing
, X/ B3 U- t4 s; a6 f% `- C5 Eterminology. When one does not know what the words (terms) mean, it is easy to
! o9 `# e, a: _2 F; X# y7 W* S( ^slip into thinking that the matter is difficult, when actually the ideas are simple,
( r: B1 x- {; m- Neasy to grasp, and fun to consider. It is the terms that get in the way, that stand as a
- p' ^' [# i0 @: c- d: D4 z  @wall between many practitioners and science. This books attempts to turn those 8 H# w0 `" M' }- a" y4 \  X
walls into windows, so that readers can peer in and join in the fun of proper tool
) ^# S% |2 L" A  C4 [design. ( L* `) j0 }9 H% A/ H4 A& x8 g# k0 o
So, why am I writing this book? There are a few reasons, but first and foremost, 2 I( W" M: {' m" C2 ?6 c, T' J
because I am a true believer in what we call technical literacy. I believe that
0 k1 t1 F- `' U* {( b2 l7 k1 A9 [everyone involved in the metal cutting business should understand the essence and
9 M  J3 o! h* L* Z5 m0 h2 ?importance of cutting tool geometry. In my opinion, this understanding is key to
$ U4 \4 U$ W+ i$ M" T! i$ ~improving efficiency of practically all machining operations. For the first time, this
# G. m, ~- G! ^0 b( q( Hbook presents and explains the direct correlations between tool geometry and tool
! s, ]4 E  v% X. Hperformance. The second reason is that I felt that there is no comprehensive book
8 ?# _! x# |% |1 Q7 Z2 j& zon the subject so professionals, practitioners, and students do not have a text from
: ^& o+ n( p! `7 R/ ^% Uwhich to learn more on the subject and thus appreciate the real value of tool * b( B- |$ X% I; s- l% l6 ]$ E
geometry. Finally, I wanted to share the key elements of tool geometry that I felt 1 I0 T4 M6 R* q* \: s0 |- P
were not broadly understood and thus used in the tool design practice and in
6 q" _* ^; s2 e4 j/ qoptimization of machining operations in industry. Moreover, being directly
+ I# ^2 b5 f1 y# i, Jinvolved in the launch of many modern manufacturing facilities equipped with & ]9 ^; }2 x2 m1 _. _0 T" u
state-of-the-art high-precision machines, I found that the cutting tool industry is not
' T# a5 w+ ^3 x4 z7 Q$ Vready to meet the challenge of modern metal cutting applications. One of the key ( z8 \# Q& u! Q6 |6 v
issues is the definite lack of understanding of the basics of tool geometry of $ ]' F- w* H& U6 b. Q6 P
standard and application-specific tools. ) u* q5 G' A; m
The lack of information on cutting tool geometry and its influence on the
6 W1 J; k. ^! O9 w# }& C6 _outcome of machining operations can be explained as follows. Many great findings , K$ `. W% ~0 |) F0 |8 ], l
on tool geometry were published a long time ago when neither CNC grinding
  d4 `0 R/ D; ^' P4 e5 n+ umachines capable of reproducing any kind of tool geometry were available nor
4 Q0 J  G( J. \% qwere computers to calculate parameters of such geometry (using numerical $ X/ z. B8 k" k. Y0 i
methods) common. Manual grinding using standard 2- and 3-axis simple grinding : l( \- t7 M. C$ f
features was common so the major requirement for tool geometry was the simpler 4 w, U" R1 d& j9 K; P% k! P8 x
the better. Moreover, old, insufficiently rigid machines, aged tool holders and part $ g4 O% q) m8 s0 D/ ~& s' G
fixtures, and poor metal working fluid (MWF) selection and maintenance levered
" p" U) G0 a8 r! T! B  aany advancement in tool geometry as its influence could not be distinguished under
; \1 s9 `( J7 Othese conditions. Besides, a great scatter in the properties of tool materials in the
9 S4 r  x5 P2 c) m6 Gpast did not allow distinguishing of the true influence of tool geometry. As a result,
2 L( F9 w4 K  q) f( S( Ystudies on tool geometry were reduced to  theoretical considerations of features of # n  Q. _) x$ X: r
twist drills and some gear manufacturing  tools such as hobs, shaving cutters, " z, w# z; I5 [
shapers, etc.  5 b9 U0 d. Z2 v
Gradually, once mighty chapters on tool geometry in metal cutting and tool 5 m4 [# ~- o7 P' {
design books were reduced to sections of few pages where no correlation between ) J3 {3 t( @1 _5 t5 \: z
tool geometry and tool performance is normally considered. What is left is a
4 n0 S0 M  I% a+ H3 c( D; Q- _6 F, Pgeneral perception that the so-called “positive geometry” is somehow better than
6 h! K3 U3 n+ ^( ~7 y“negative geometry.” As such, there is no quantitative translation of the word 0 F5 M. O; z3 O( U) }. L& |
“better” into the language  of technical data although a great number of articles
! I) E, `, Y+ l% pwritten in many professional magazines discuss the qualitative advantages of
8 |0 Y' f3 D- _: {- D# z5 N( L“positive geometry.” For example, one popular manufacturing magazine article
  m6 T1 d; d3 Kread “Negative rake tools have a much  stronger leading edge and tend to push
% y& x4 n/ L, s2 Yagainst the workpiece in the direction of the cutter feed. This geometry is less free - \* L* W/ e! t( o( M7 L
cutting than positive rakes and so consumes more horsepower to cut.” Reading 5 U' A6 Y" R5 w1 h2 @
these articles one may wonder why cutting tool manufacturers did not switch their / C  d8 E1 l; f
tool designs completely to this mysterious “positive geometry” or why some of
: k1 Q  _! }' K- jthem still investigate and promote negative geometry.
9 E/ a& O4 N1 G6 p/ P" X3 cDuring recent decades, the metalworking industry underwent several important * X' L/ t7 R5 q/ I
changes that should bring cutting tool geometry into the forefront of tool design
+ z/ y$ _/ u! O; M* o# band implementation:
回复 支持 反对

使用道具 举报

 楼主| 发表于 2011-6-24 22:03:42 | 显示全部楼层
1   What Does It Mean “Metal Cutting”? ...........................................................1 . w3 x. N  y0 H) e+ |; p9 H% w, b
1.1   Introduction ...............................................................................................1
' K! h$ v! U2 M( V1.2   Known Results and Comparison with Other Forming Processes ..............2
( @. h4 r: M$ }  1.2.1   Single-shear Plane Model of Metal Cutting ...................................2   P" ^. o& D7 b4 ?
  1.2.2   Metal Cutting vs. Other Closely Related Manufacturing  
  A! K, ~) r+ _' j. I; \. n1 ?4 P Operations .................................................................................................5 ' y# T* t+ h+ |- K( T. {1 ?
1.3   What Went Wrong in the Representation of Metal Cutting?...................22
. {/ O3 U9 G  \( T( I# C; L1 ?  1.3.1   Force Diagram..............................................................................23
3 s- X2 O# [2 H  S& q9 O* L  1.3.2   Resistance of the Work Material in Cutting.................................25 % R% i. S1 G- W) g
  1.3.3   Comparison of the Known Solutions for the Single-shear  
7 g( V# I: t5 J/ q: k2 e9 H1 X4 ?  Plane Model with Experimental Results .................................................27
9 d1 c; l& B6 L& B( c* [1.4   What is Metal Cutting?............................................................................28
" O' n, u0 @+ N8 k  1.4.1   Importance to Know the Right Answer........................................28
1 q- O# I% b) O! m 1.4.2  Definition .....................................................................................28
* }+ N2 J# b, V9 a/ g% v  1.4.3   Relevance to the Cutting Tool Geometry.....................................29 $ N+ H* o- V3 |8 r# s5 K
1.5   Fundamental Laws of Metal Cutting.......................................................32
' G$ P( @1 S. }" l  1.5.1   Optimal Cutting Temperature – Makarow’s Law........................32
- y$ ]) ]' y, x% Y& _ 1.5.2  Deformation Law.........................................................................35
' f  b. [: E6 OReferences........................................................................................................50
/ @* u1 Q; M% a$ w7 E/ h 2   Basic Definitions and Cutting Tool Geometry,    j2 }+ f! C! z% z# \
Single Point Cutting Tools ............................................................................55 ' g! V$ n; b4 ^$ F- k/ ~& T
2.1   Basic Terms and Definitions ...................................................................55   M( A* {* H  T- J7 X3 A/ C6 l
2.1.1  Workpiece Surfaces.......................................................................57 : c% a5 X( B. z$ W
2.1.2  Tool Surfaces and Elements ..........................................................57
8 \% t1 j$ D$ K% c7 b 2.1.3  Tool and Workpiece Motions.......................................................57 0 v' V& u" h/ m$ C. [
2.1.4  Types of Cutting ............................................................................58 + n6 K: B" w& V, [' [  r
2.2   Cutting Tool Geometry Standards...........................................................60
/ ]1 d" t6 D! }0 J8 }0 t2.3   Systems of Consideration of Tool Geometry ..........................................61
$ @# v4 A6 ?, L0 ?: G, O: [2.4.  Tool-in-hand System (T-hand-S) .......................................................645 |- g; ?/ f" a0 x% @
  2.4.1   Tool-in-hand Coordinate System.................................................64 " N. s% A2 S) d; p
2.4.2  References Planes ........................................................................66
+ R) @/ d9 y5 c% y  y9 w3 G 2.4.3  Tool Angles..................................................................................68
6 Z' ]2 d2 m4 q- _- L9 p  2.4.4   Geometry of Cutting Tools with Indexable Inserts ......................74   F7 ?. U2 K7 @* b
2.5   Tool-in-machine System (T-mach-S)......................................................84
; W) p, n9 y" [& i0 d) M 2.5.1  Angles ..........................................................................................84 & f4 |! y4 p. {- A; a
  2.5.2   Example 2.3 .................................................................................88 * j% U: `' i+ g' u* m" L( O$ u
2.6   Tool-in-use System (T-use-S) .................................................................90
- @1 P9 p  f$ b  s( Y 2.6.1  Reference Planes ..........................................................................91
$ |+ ?' W. E' _ 2.6.2  The Concept .................................................................................92 7 [! t" q( [! J/ j
  2.6.3   Modification of the T-hand-S Cool Geometry .............................92
2 |+ U2 P) n/ }8 r1 q0 j  2.6.4   Kinematic Angles.........................................................................98
- ~# @6 q5 B! G+ ^  2.6.5   Example 2.4 ...............................................................................100 : @. {; Q) ~0 K/ g/ K- ?5 s, Z- T
2.7   Avalanched Representation of the Cutting Tool Geometry  ; A' m4 G0 H1 R% z1 K+ G7 D
in T-hand-S............................................................................................102
2 I, L( V! \" b* R3 X4 P5 r1 Y 2.7.1  Basic Tool Geometry .................................................................102
3 P' j, s2 N9 \$ Y; g1 Z& g! k9 u! m2.7.2   Determination of Cutting Tool Angles Relation 1 t) s; I2 u# b
  for a Wiper Cutting Insert ..........................................................108
) c2 D! S. W4 S% ^* V2 q  2.7.3   Determination of Cutting Tool Angles  ' ?7 x) l' m8 [! ~* L. n
   for a Single-point Tool ...............................................................110
! z% m) q$ E$ [1 T- m1 h  2.7.4   Flank Angles of a Dovetail Forming Tool .................................117
8 m* \( Q& I5 N0 \1 p  2.7.5   Summation of Several Motions..................................................119 * @, [- p8 o. X/ a
References......................................................................................................125
- Y2 U' K/ q! A; x3  Fundamentals of the Selection of Cutting Tool Geometry Parameters...127 $ G' g" N+ Y6 ?9 h" \9 m
3.1   Introduction ...........................................................................................127 6 N* x  |1 s0 n- r' ]
3.2   General Considerations in the Selection of Parameters  1 I8 Q. S) h* L6 L! v/ y. f
  of Cutting Tool Geometry .....................................................................129
9 z, |/ j0 J+ f- D& u1 c7 ` 3.2.1 Known Results .............................................................................129 $ A& e9 V2 h) T" j& c8 ]( ^  z" f2 |
  3.2.2 Ideal Tool Geometry and Constrains............................................130
& v' q7 N- v. R3 G  3.2.3 Practical Gage for Experimental Evaluation of Tool Geometry...132
& F1 K, K. c/ f* H( A: ]% E3.3   Tool Cutting Edge Angles .....................................................................132 8 u7 ]! M  Y2 }' Q
3.3.1  General Consideration................................................................132
/ v2 e9 _6 s! f0 r' }) v( ~  3.3.2   Uncut ChipT in Non-free Cutting ..............................................134
" b% u- n9 E( `& L" r  3.3.3   Influence on the Surface Finish..................................................142 0 k- ?8 k2 o* L" g
3.3.4  Tools with κr > 90°.....................................................................144 / w/ t/ W6 ?7 c( a1 |' @1 u$ B
  3.3.5   Tool Minor Cutting Edge Angle ................................................147
$ A( C2 R' m+ G- H+ U2 ]& }3.4.  Edge Preparation ...................................................................................161
; K9 _* N7 E/ P% Z& f 3.4.1  General .......................................................................................161 % [/ B3 r3 p+ q& b# ?1 ]
  3.4.2   Shape and Extent........................................................................163 - L8 Z8 B7 p: h  A9 \: a
3.4.3  Limitations .................................................................................163 + R& l6 J  F: c5 z4 ~9 d
  3.4.4   What Edge Preparation Actually Does.......................................169 ( L6 t! m7 q: d; C1 }2 g! I
3.5   Rake Angle............................................................................................171
8 `/ n& ~, \, M2 P# C 3.5.1  Introduction................................................................................171
% l5 |) n$ o6 H+ q$ G  3.5.2   Influence on Plastic Deformation and Generazliations ..............175
; J) a: c5 o/ Y6 V3 M8 N3 k  3.5.3   Effective Rake Angle .................................................................183 * J0 b9 C( I+ I5 j) p6 F
  3.5.4   Conditions for Using High Rake Angles....................................189
5 d3 c6 f: |1 h6 H. k8 Y8 H3.6   Flank Angle ...........................................................................................191
$ ~  \% X6 A/ c8 C/ @3.7   Inclination Angle...................................................................................193
* ?0 P( Q% ]7 @6 y# V5 i7 ~- O      3.7.1   Turning with Rotary Tools.........................................................195 4 D" Y* o  a) e
3.7.2  Helical Treading Taps and Broaches..........................................197
# G* n) a& t! N& s2 W& P 3.7.3  Milling Tools..............................................................................198
' @4 F! s+ E- z6 dReferences......................................................................................................201 , x- {7 ?/ P; z: j3 I
4   Straight Flute and Twist Drills ...................................................................205
, Q9 g  g9 V( @* a4.1   Introduction ...........................................................................................205
+ B7 u" S7 h" }1 U7 Q4.2   Classification.........................................................................................206
& N2 o: g! E; h0 F+ d& E& I& X4.3   Basic Terms...........................................................................................208 ! m/ |9 M8 a( d9 O% Y
4.4   System Approach ..................................................................................211 , B. c0 P: e# h+ @) b3 G: f
4.4.1  System Objective .......................................................................212
: a- s( R7 z/ z; \1 L. l5 D 4.4.2  Understanding the Drilling System............................................212
. n, m1 Y1 x  |+ z0 h( P% u  4.4.3.  Understanding the Tool..............................................................212
2 F- D3 z5 j! I# w4.5.  Force System Constrains on the Drill Penetration Rate ........................213   I# `$ }( g! @, \
  4.5.1   Force-balance Problem in Conventional Drills ..........................213
9 x. w8 j: g1 K  4.5.2   Constrains on the Drill Penetration Rate....................................218
2 K8 ?4 i7 C0 w4 t) B6 j; y 4.5.3  Drilling Torque ..........................................................................219
" \. u8 _; P# X( o 4.5.4  Axial Force.................................................................................220 3 M9 u0 s* q* K5 L
  4.5.5   Axial Force (Thrust)-torque Coupling .......................................221 & [6 B/ K0 m7 h0 l- i" u1 o
4.6   Drill Point ..............................................................................................223 4 r' {2 }# Z$ b% s1 e# z
4.6.1  Basic Classifications ..................................................................223
8 c6 b& L, V" U  4.6.2   Tool Geometry Measures to Increase the Allowable  
+ a) K/ e0 [- J6 P- { Penetration Rate ....................................................................................224 # e, ?! B# _0 E+ @/ n! v
4.7   Common Design and Manufacturing Flaws..........................................259
8 ?/ U$ N& _2 Q) x, `0 V  4.7.1   Web Eccentricity/ Lip Index Error.............................................260
0 T% ~3 D1 c4 d# l* F2 _  4.7.2   Poor Surface Finish and Improper Tool Material/Hardness.......261
2 @. k0 @2 y6 W$ m2 ~# ^6 V1 P 4.7.3  Coolant Hole Location and Size.................................................263
( A/ M& x; x: Y# r' i* Z: \! a. ?4.8   Tool Geometry ......................................................................................267 7 r7 k" m* r: ]7 `' w
  4.8.1   Straight-flute and Twist Drills Particularities............................269 " T/ \8 Q( f0 n( v5 _6 _" C
  4.8.2   Geometry of the Typical Drill Point ..........................................270 / L1 o# d8 E0 `$ s( T" `3 c7 \. o
  4.8.3   Rake Angle.................................................................................272
9 y( F0 C, C* j! A$ W, v  4.8.4  Inclination Angle .........................................................................280 * Q- J* K7 A; L) K: j
4.8.5  Flank Angle................................................................................281 7 q6 J- X2 V% d6 w, M, i; Q
  4.8.6   Geometry of a Cutting Edge Located at an Angle  3 r  [/ N) E5 r/ L/ s4 U9 F& [! j
   to the y0-plane ............................................................................292
( t( z  W( }. R) x- \7 ]1 c 4.8.7  Chisel Edge ................................................................................295
* J0 l% U  Z# G/ G% b9 m  4.8.8   Drill Flank is Formed by Two Planes: Generalization...............306 % i: W+ F/ Y$ Y* H2 W; s' b! i
  4.8.9   Drill Flank Angle Formed by Three Planes ...............................310
7 m3 S, u3 R% p6 x: m( c0 `* C' C5 y 4.8.10  Flank Formed by Quadratic Surfaces.........................................313 8 k: l) K4 T) L6 N) H. z
4.9   Load Over the Drill Cutting Edge .........................................................324 ) _& m% o* g: I3 F, ?- o& L; m- u
   4.9.1   Uncut Chip Thickness in Drilling ..............................................325 0 q" B& ]. x( s- m9 H) B3 r
  4.9.2   Load Distribution Over the Cutting Edge ..................................327
9 Y+ Q- s2 q& l7 d4 d/ s4.10  Drills with Curved and Segmented Cutting Edges ................................328 9 p! t2 t, x# |& x+ Y
  4.10.1 Load of the Cutting Part of a Drill with Curved Cutting Edges .329
( N, \3 s4 J% s; [1 s  4.10.2 Rake Angle.................................................................................332
8 T0 l" }- W; BReferences......................................................................................................337
# e" R9 ?! i' U) l5   Deep-hole Tools............................................................................................341
/ q9 W4 e# S2 c% B% V5.1   Introduction ...........................................................................................341 8 D" d% g+ C$ o( I7 M- b9 _4 h9 k0 t0 C1 _
5.2   Generic Classification of Deep-hole Machining Operations.................343
1 c7 N; a) ~8 z! ]( R5.3   What Does ‘Self-piloting Tool’ Mean? .................................................345
$ ^% Y2 d& A+ [: k9 U2 Z  5.3.1   Force Balance in Self-piloting Tools..........................................345 $ z: }9 o+ T% I# g
5.4   Three Basic Kinematic Schemes of Drilling .........................................350 * [* U# G0 [. f8 R) Y( @" r
  5.4.1   Gundrill Rotates and the Workpiece is Stationary .....................351
. _4 x" Q6 O* q" m: F3 \" u 5.4.2  Workpiece Rotates and the Gundrill is Stationary .....................352
; y+ N/ J- f3 n, {  g: M. e 5.4.3  Counterrotation ..........................................................................352
5 I! b/ v1 J/ N6 A& n3 e5.5   System Approach ..................................................................................353
9 _4 d) m/ g# A0 n# G3 E  z( c  5.5.1   Handling Tool Failure ................................................................353
& z3 g7 z8 C  D 5.5.2  System Considerations ...............................................................354 7 l$ n6 q6 d3 q6 S4 }
5.6   Gundrills................................................................................................362
, p# D% @& h6 ?' j9 ^8 O0 @. [' t 5.6.1  Basic Geometry..........................................................................362
( s; K  g: e) k7 w# v 5.6.2  Rake Surface ..............................................................................365
/ Z: ]6 @; M5 G% @* ?7 ~  5.6.3   Geometry of Major Flanks .........................................................370 " R7 E1 \6 C8 Z" ~
5.6.4  System Considerations in Gundrill Design ................................390 ; T+ S4 a/ k8 f5 k' \
5.6.5   Examplification of Significance of the High MWF Pressure
1 h9 Z8 y/ t' i4 f5 o$ y  in the Bottom Clearance Space ..................................................423
. f! G0 l7 T; y/ M, g5 e( W  5.6.6   Example of Experimental Study ................................................425 , M! j) a  o3 _% l% b0 z% T' y
  5.6.7   Optimization of Tool Geometry.................................................439
1 H: p3 A* G/ b% j+ I. |& ZReferences......................................................................................................440 ' _) O: E6 Q2 a1 I! ~; e! p) y
Appendix A  1 ^; t% B) A, w# \+ |
Basic Kinematics of Turning and Drilling.......................................................443
1 o- E2 O2 r/ K6 a. xA.1   Introduction ...........................................................................................443 - u- C, ~( `- S* }9 h
A.2  Turning and Boring ...............................................................................444 " i8 X. _4 {& }- O9 v" `0 v' w
  A.2.1  Basic Motions in Turning...........................................................444
. ~1 w$ S/ ~* ^$ t" m  A.2.2  Cutting Speed in Turning and Boring ........................................448
. y1 R) V6 j% [% n+ h; o7 ?  A.2.3  Feed and Feed Rate ....................................................................448
9 y; x9 p/ b8 E0 v  A.2.4  Depth of Cut...............................................................................449 0 ^( b9 ~: c9 Q6 P# k
A.2.5  Material Removal Rate ..............................................................449
' m" E8 z9 ~# V" d A.2.6  Resultant Motion........................................................................450 9 u( T+ u9 C# \
A.3  Drilling and Reaming ............................................................................450
4 `( |9 a: T* p! m9 [; L A.3.1  Basic Motions in Drilling...........................................................450 6 {0 B- y/ P" U
A.3.2  Machining Regime.....................................................................451 , r& O0 q' h7 |! K
A.4  Cutting Force and Power .......................................................................453 0 b$ v1 I) D5 @# F# R6 |3 D
  A.4.1  Force System in Metal Cutting...................................................453 # r3 n" B& G2 x5 G" i
  A.4.2  Cutting Power ............................................................................454
  p* T2 \& W3 o A.4.3  Practical Assessment of the Cutting Force.................................455 + o! g& `% p3 l' J5 B  N' J
References......................................................................................................461
9 A& ]( ^8 K) s  C/ l: ?6 u( zAppendix B  
; J0 a: Z3 M2 I! hANSI and ISO Turning Indexable Inserts and Holders.................................463
7 U) X2 T* `5 Q( }3 |8 N% t* ~B.1   Indexable Inserts ...................................................................................463 % L1 c% O: ^/ m/ G* j
  B.1.1  ANSI Code .................................................................................464 * F" o& f% }8 t, L
B.1.2  ISO Code....................................................................................471 7 [( I2 J& V: r" V
  B.2 Tool Holders for Indexable Inserts (Single Point Tools) ......................491
( s! {# D" V0 x3 F, R" P, ]  B.2.1   Symbol for the Method of Holding Horizontally Mounted  
2 w5 N5 w. n9 |) X; ?# v/ C Insert – Reference Position (1) ..............................................................492 9 ?8 {* E/ q8 c
  B.2.2   Symbol for Insert Shape – Reference Position (2) .....................493 * R4 z& a5 j4 p+ |
  B.2.3   Symbol for Tool Style – Reference Position (3) ........................493
! [' Q% c) w! R* X2 @  B.2.4   Letter Symbol Identifying Insert Normal Clearance –  
! m# F+ M( L$ Z& t# ?   Reference Position (4)................................................................494
1 N) s  r& y4 m  B.2.5   Symbol for Tool Hand – Reference position (5) ........................494
/ }; o: t( L2 n- t4 }, Q  B.2.6  Symbol for Tool Height (Shank Height of Tool Holders  / }" A' O. ~" R+ X( f$ T# P9 B
    and Height of Cutting Edge) - Reference Position (6) ...............494
5 v  B. X# _! i$ ~  B.2.7  Number Symbol Identifying Tool Holder Shank Width –  9 L1 t/ c0 k3 |
   Reference Position (7)................................................................495
- k+ i! q3 y# V2 t+ H6 t* M" L  B.2.8  Number Symbol Identifying Tool Length –  7 ^5 p/ i2 R" D" ]" w+ F. _' l
   Reference Position (8)................................................................495
- N" X1 p! y7 o2 ?  B.2.9   Letter Symbol Identifying Indexable Insert Size –  4 V& o2 v5 N( a, ^% v$ K3 y
   Reference Position (9)................................................................497
9 i: b! h% @' h1 p, ^5 w: W* WAppendix C  $ y9 s- G1 j! w, c
Basics of Vector Analysis ..................................................................................499 : `+ G& O. s9 X$ j
C.1   Vectors and Scalars ...............................................................................499 . d- O# v; {7 q; u0 [6 U/ E
C.2   Definition and Representation...............................................................500
8 Q' v- g0 H( g9 C3 _ C.2.1  Definitions..................................................................................500
6 U6 ?7 H" r7 F6 T7 B8 }, t C.2.2  Basic Vector Operations ............................................................503 ( g" r% l7 q6 J/ `2 V; a* i
C.3   Application Conveniences.....................................................................509
9 i4 r# q: [  Y$ q2 H# bC.4  Rotation: Linear and Angular Velocities...............................................511 ; Q' y" [% W- p* p- I
  C.4.1   Planar Linear and Angular Velocities ........................................511
6 p' P9 L( }( m  W; {9 F  I( n  C.4.2   Rotation: The Angular Velocity Vector .....................................515 ' ?) ~* l- O8 @
References ...........................................................................................................518
7 n2 _' V- e! L/ V; z, t9 mAppendix D  , S) T/ ^7 }7 L; V9 A. J0 J
Hydraulic Losses: Basics and Gundrill Specifics............................................519 7 N3 X6 a# h5 O5 D+ y
D.1  Hydraulic Pressure Losses – General ....................................................519
4 z1 e; V; p$ x D.1.1  Major Losses: Friction Factor ....................................................520
& `& w; p3 [3 a+ |  D.1.2  Minor Losses (Losses Due to Form Resistance) ........................521 # W/ g1 m  x0 q& {; g3 m
D.2  Concept of the Critical MWF Velocity and Flow Rate .........................521
( {6 ]/ Z* g6 ]1 F7 x4 X3 g  D.2.1  MWF Flow Rate Needed for Reliable Chip Transportation.......522 , B! j! _& ^6 {: I0 p- @
  D.2.3  Example D.1...............................................................................527
# \8 k4 J' x$ w( Q% ^1 rD.3   Inlet MWF pressure...............................................................................528 2 o2 D( a# A) D
D.4  Analysis of Hydraulic Resistances ........................................................532 : T- D3 `' O( _, h
  D.4.1  Analysis of Hydraulic Resistances Over Which the Designer  
1 `; O1 e" T; U, T    Has No or Little Control ............................................................532 * t: n% S2 M+ [7 `% h8 B
  D.4.2  Variable Resistances Over Which the Designer Has Control ....535
. ]/ p7 l, C: l) DD.5   Practical Implementation in the Drill Design ........................................539
- m4 O! [0 H0 ^) `3 p" [% oReferences ..........................................................................................................543 / {" P- W+ {/ S+ o4 v( f- a
Appendix E 6 r4 W9 l; R; Q4 a! J0 D( z5 r, }
Requirements and Examples of Cutting Tool Drawings................................545
. I- ~- f, U9 B) H% oE.1   Introduction ...........................................................................................545 , x4 R. {+ k! `' w
E.2   Tool Drawings – the Existent Practice ..................................................546 ! N4 S& ^8 W4 G
E.3   Tool Drawing Requrements ..................................................................548 ( }4 W' ?0 s8 _* a7 ~% W2 ?
E.4   Examples of Tool Drawing ...................................................................553 9 ]) K! q. ~4 z5 E+ d
References ..........................................................................................................559
! f0 c2 l& U* W' F/ ~* w9 eIndex…………………………………………………………………………….561
! y: o( S1 f3 W0 ^1 J3 W" M+ G % w% u6 ~+ \: p+ D* h( e
- j/ q, ^. Q  E4 }0 f! ~
回复 支持 反对

使用道具 举报

发表于 2011-6-25 13:07:50 | 显示全部楼层
都是些神马?
回复 支持 反对

使用道具 举报

发表于 2011-6-25 13:33:41 | 显示全部楼层
埋头挖矿中。。。。。。。。。
回复 支持 反对

使用道具 举报

发表于 2011-6-26 15:14:56 | 显示全部楼层
好东西啊。。。只是,刀具不是我的工作。。。顶起,不沉。。。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2011-6-26 18:10:54 | 显示全部楼层
专业人士自有看法。
回复 支持 反对

使用道具 举报

发表于 2011-6-27 18:42:38 | 显示全部楼层
好东西啊,英文的,看着太费劲了
回复 支持 反对

使用道具 举报

发表于 2011-6-27 21:53:22 | 显示全部楼层
从网上查找这本书是Springer Series in Advanced Manufacturing丛书中的一本
7 }* q9 E) Z- M+ @请问这套丛书共包含哪几本书
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

小黑屋|手机版|Archiver|机械社区 ( 京ICP备10217105号-1,京ICP证050210号,浙公网安备33038202004372号 )

GMT+8, 2025-4-26 17:28 , Processed in 0.073536 second(s), 18 queries , Gzip On.

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表