找回密码
 注册会员

QQ登录

只需一步,快速开始

搜索
查看: 8664|回复: 19

Geometry_of_Single_point_Turning_Tools_and_Drills

 火.. [复制链接]
发表于 2011-6-23 22:58:22 | 显示全部楼层 |阅读模式
本帖最后由 机器鼠 于 2011-6-23 23:18 编辑 % B9 x, w! k" k$ ?" @- W0 s

5 c  t3 C5 `: E$ p* @, O" G# y' S7 IGeometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Applications.pdf/ v6 Z/ u  W3 C- i7 Z
有要的吗?刀具,细节,很到位。英文版。6 q) n$ `9 v( z! P  n4 }  Z
国内无人这么细研究的吧?

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 阅读权限: 90, 下载次数: 8, 下载积分: 威望 -10 点

7

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 7, 下载积分: 威望 -10 点

6

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 8, 下载积分: 威望 -10 点

5

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

4

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

3

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

2

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

140.75 KB, 阅读权限: 90, 下载次数: 7, 下载积分: 威望 -10 点

1

回复

使用道具 举报

发表于 2011-6-24 19:17:16 | 显示全部楼层
说什么的?
 楼主| 发表于 2011-6-24 22:02:25 | 显示全部楼层
Although almost any book and/or text on metal cutting, cutting tool design, and 0 d7 X7 x0 ]% o2 g/ x) ?
manufacturing process discusses to a certain extent the tool geometry, the body of # g4 r5 S6 x5 P: e/ x. J9 N: E
knowledge on the subject is scattered and  confusing. Moreover, there is no clear : Y$ e  {/ B& ~8 O0 E# ?4 M9 [; F
objective(s) set in the selection of the tool geometry parameters so that an answer
- v) @7 J3 p5 _) R/ o' n* j! lto a simple question about optimal tool geometry cannot be found in the literature
0 p$ l" r6 I% a" b* q' ?1 I) Pon the subject. This is because a criterion (criteria) of optimization is not clear, on
0 m$ s: E7 `  f" f. H3 k( xone hand, and because the role of cutting tool geometry in machining process $ \( x( K! S2 ^
optimization has never been studied systematically, on the other. As a result, many
3 i4 ]3 R1 U" k* _" N6 G  p# U: t! kpractical tool/process designers are forced to use extremely vague ranges of tool
2 a2 l6 _- x4 P$ V8 ~. [( wgeometry parameters provided by handbooks. Being at least 20+ years outdated,
) F% z! v( c  v7 C7 D8 ]$ `# mthese data do not account for any particularities of a machining operation including
$ e$ D: w3 p& @; ?  m; ~8 o3 Ea particular grade of tool material, the condition of the machine used, the cutting
4 p+ e, [! y3 Ofluid, properties and metallurgical condition of the work material, requirements to 4 c. Y7 X: z$ L' |
the integrity of the machined surface, etc. & U. w3 ], u% Q2 {
Unfortunately, while today's professionals, practitioners, and students are
; e2 g4 P6 ?: t, qinterested in cutting tool geometry, they are doomed to struggle with the confusing - D  f0 I+ J* z
terminology. When one does not know what the words (terms) mean, it is easy to
/ ^. @3 ^* S5 B) t, {slip into thinking that the matter is difficult, when actually the ideas are simple,
' s: i0 Z! E7 W' K; v4 m, ^' weasy to grasp, and fun to consider. It is the terms that get in the way, that stand as a
: Y$ }2 a; U( I1 G$ E9 Lwall between many practitioners and science. This books attempts to turn those * r, ?9 g7 L$ s2 W5 ~& j
walls into windows, so that readers can peer in and join in the fun of proper tool & S& [3 y. |, `/ j  T
design.
% d# W. \+ X+ r4 kSo, why am I writing this book? There are a few reasons, but first and foremost, / M) N4 T# I+ [$ h( i. |3 X
because I am a true believer in what we call technical literacy. I believe that 3 g4 A4 z& R- E7 M; C5 x+ Z
everyone involved in the metal cutting business should understand the essence and
  C" h0 d+ ]* A0 Q, Pimportance of cutting tool geometry. In my opinion, this understanding is key to
  i2 E# G7 Q- s& A9 Wimproving efficiency of practically all machining operations. For the first time, this : H7 r: U2 v5 H' H- ]  u
book presents and explains the direct correlations between tool geometry and tool
9 z" t5 M; Q9 ^4 N3 O7 w& j/ k* Y9 H" Zperformance. The second reason is that I felt that there is no comprehensive book , P9 O1 b$ a+ n5 `+ j( c/ g
on the subject so professionals, practitioners, and students do not have a text from
, L0 ^$ }1 `& v; J, Rwhich to learn more on the subject and thus appreciate the real value of tool . ^/ n( z' Y8 Y7 B" B* N
geometry. Finally, I wanted to share the key elements of tool geometry that I felt % w; P7 Q3 ]; X7 G$ I5 m0 e
were not broadly understood and thus used in the tool design practice and in
$ `# f' a$ Z# n7 s7 p: d% \$ n2 d  Foptimization of machining operations in industry. Moreover, being directly
* N' i% e" J! S$ @involved in the launch of many modern manufacturing facilities equipped with
# V6 D4 |, i; {" j6 z* o* L3 kstate-of-the-art high-precision machines, I found that the cutting tool industry is not 5 S# U8 o& R' w; j' z
ready to meet the challenge of modern metal cutting applications. One of the key
, g! D8 E( @4 b- p& o5 Gissues is the definite lack of understanding of the basics of tool geometry of . B' b  T5 [% B/ J# R4 r" a
standard and application-specific tools.
4 z: u& O: |) K5 I$ J, P- [: UThe lack of information on cutting tool geometry and its influence on the
1 L6 n5 I- |# Y# W# `1 l) ~& t1 H/ soutcome of machining operations can be explained as follows. Many great findings - j# ]; t$ n" D9 |  \4 m' p( J
on tool geometry were published a long time ago when neither CNC grinding
+ ]+ ~9 G& _6 p% C1 y8 bmachines capable of reproducing any kind of tool geometry were available nor   n; ^0 k9 ]  L6 a7 ~* {! I; {
were computers to calculate parameters of such geometry (using numerical
7 q# r+ t8 h0 a% v% `9 U" K: b& Smethods) common. Manual grinding using standard 2- and 3-axis simple grinding $ A" M* s5 P. Q3 _$ K. m
features was common so the major requirement for tool geometry was the simpler : L: C  f- D4 ?! d
the better. Moreover, old, insufficiently rigid machines, aged tool holders and part 5 \3 M" E0 C5 g
fixtures, and poor metal working fluid (MWF) selection and maintenance levered
1 ^' I1 T+ l- A- e& \) gany advancement in tool geometry as its influence could not be distinguished under ( E6 j0 M$ m; A7 K3 s
these conditions. Besides, a great scatter in the properties of tool materials in the . H! h) E: m6 ^& l( u7 I( L" I: j
past did not allow distinguishing of the true influence of tool geometry. As a result,
+ a, @6 h- N/ O" B4 r$ w5 B) d: estudies on tool geometry were reduced to  theoretical considerations of features of
: K' a& l6 i) C* @0 Ytwist drills and some gear manufacturing  tools such as hobs, shaving cutters, 0 @/ v6 h$ d0 g0 u, X
shapers, etc.  - F+ c$ s: q6 e5 J
Gradually, once mighty chapters on tool geometry in metal cutting and tool
* S& s' l: w( m1 C! {- Bdesign books were reduced to sections of few pages where no correlation between " l$ n' i" y& \0 G9 d9 L
tool geometry and tool performance is normally considered. What is left is a
  j4 f7 b* E! J! Dgeneral perception that the so-called “positive geometry” is somehow better than
) b0 H$ k$ T% G1 v5 x3 K4 m* v“negative geometry.” As such, there is no quantitative translation of the word
# @, q/ G' ?/ y; x( W“better” into the language  of technical data although a great number of articles ; a3 M1 [8 G1 o
written in many professional magazines discuss the qualitative advantages of 0 n# w# |% n- a5 \/ H
“positive geometry.” For example, one popular manufacturing magazine article
( z- J, ]) q( l; j) `$ |5 u+ fread “Negative rake tools have a much  stronger leading edge and tend to push
6 F2 B* ^4 E5 f# u. h' v  ~against the workpiece in the direction of the cutter feed. This geometry is less free
! {+ k7 S+ |! h, Q) |) t0 V. `cutting than positive rakes and so consumes more horsepower to cut.” Reading ' R* [: c6 E6 B2 E$ P
these articles one may wonder why cutting tool manufacturers did not switch their
% g% Y7 ~  E) f. o- ntool designs completely to this mysterious “positive geometry” or why some of # H- i9 @1 Z1 y0 V- Z% O9 }
them still investigate and promote negative geometry. ! W, O0 p4 m; |* J! F  D7 Z0 |& X3 v
During recent decades, the metalworking industry underwent several important 3 C0 B( c' R% W$ Z2 n
changes that should bring cutting tool geometry into the forefront of tool design ( f+ _5 s' k4 \9 i1 T) y: z
and implementation:
 楼主| 发表于 2011-6-24 22:03:42 | 显示全部楼层
1   What Does It Mean “Metal Cutting”? ...........................................................1 + u$ z+ g: Z' j4 v- o
1.1   Introduction ...............................................................................................1 6 S: [2 _- j) D$ A, m' f
1.2   Known Results and Comparison with Other Forming Processes ..............2
" v3 J! H. l# H/ d5 R* A# V  1.2.1   Single-shear Plane Model of Metal Cutting ...................................2
1 g; k- Y9 ~) E9 q5 ]  1.2.2   Metal Cutting vs. Other Closely Related Manufacturing  
. t! p; z; r% n6 x8 L Operations .................................................................................................5
) N2 F3 H' {3 e1 ?* Q" Z2 V: c$ i) g1.3   What Went Wrong in the Representation of Metal Cutting?...................22
& u: w% l1 P8 Q2 J  1.3.1   Force Diagram..............................................................................23
7 {! f8 G  W* H9 U  q  1.3.2   Resistance of the Work Material in Cutting.................................25 - K& b7 t- l" @0 B. _! c
  1.3.3   Comparison of the Known Solutions for the Single-shear  ' Q7 N% C9 z/ C  L/ M* w/ @* x
  Plane Model with Experimental Results .................................................27 . I9 {" `2 X3 Y
1.4   What is Metal Cutting?............................................................................28
) d# R, w+ K5 B% {  J" B  1.4.1   Importance to Know the Right Answer........................................28 & N* f8 g3 w- z0 v% I0 F
1.4.2  Definition .....................................................................................28 , v; U7 o1 _7 w* a0 G- q0 B2 {" J
  1.4.3   Relevance to the Cutting Tool Geometry.....................................29 9 F( t, K) g7 E# }/ C
1.5   Fundamental Laws of Metal Cutting.......................................................32
* H0 a, q  n$ S+ g8 W" I  1.5.1   Optimal Cutting Temperature – Makarow’s Law........................32
6 j# w+ r4 @6 @2 o* M# B- P0 i' U+ Z 1.5.2  Deformation Law.........................................................................35 3 v: ~# d7 ?& t+ ]. O" ^5 T
References........................................................................................................50 4 E9 `# d/ C3 a, U
2   Basic Definitions and Cutting Tool Geometry,  2 J1 `; B( v) M# I7 |+ D* m$ e# F  O
Single Point Cutting Tools ............................................................................55
0 X* P6 x$ b0 j; [" F2.1   Basic Terms and Definitions ...................................................................55   I& i0 d5 r( F
2.1.1  Workpiece Surfaces.......................................................................57 " y" U' o' M& k/ o1 M' I: ]+ [
2.1.2  Tool Surfaces and Elements ..........................................................57 ) L6 Z% F* [0 c; \
2.1.3  Tool and Workpiece Motions.......................................................57 , b0 M8 S+ `3 y; H) [
2.1.4  Types of Cutting ............................................................................58
6 H9 P0 R+ F! [  ]2.2   Cutting Tool Geometry Standards...........................................................60 % u! J  P3 @. L/ t
2.3   Systems of Consideration of Tool Geometry ..........................................61 ) @+ f; ]3 {/ B* k  J
2.4.  Tool-in-hand System (T-hand-S) .......................................................64( [) i9 j' H) m: b# E
  2.4.1   Tool-in-hand Coordinate System.................................................64 & N3 k3 S( \( a( ]/ z
2.4.2  References Planes ........................................................................66
3 G$ F- v8 a+ k1 L( S7 s 2.4.3  Tool Angles..................................................................................68
7 R1 e1 A$ [  w2 o$ D, o  2.4.4   Geometry of Cutting Tools with Indexable Inserts ......................74 0 X( J; x& E# G2 m5 `4 l* L
2.5   Tool-in-machine System (T-mach-S)......................................................84
; G$ n# \4 R, }# H1 }3 x2 b 2.5.1  Angles ..........................................................................................84 . H0 X& s: y% Y* ]/ h5 L" ^
  2.5.2   Example 2.3 .................................................................................88
0 x* }3 a$ g3 n+ O2.6   Tool-in-use System (T-use-S) .................................................................90 7 S- ]& F) ~' s7 x  p! ~, y
2.6.1  Reference Planes ..........................................................................91 ( z5 J3 V4 R  @2 b- @' X
2.6.2  The Concept .................................................................................92
5 g" E! g8 p' c1 T, Y2 ^9 u  2.6.3   Modification of the T-hand-S Cool Geometry .............................92
6 J2 t  }: T' g6 z  2.6.4   Kinematic Angles.........................................................................98
2 G8 @  `3 s7 Z: M" ~) n; J  2.6.5   Example 2.4 ...............................................................................100 2 l/ A3 g; t+ E3 G7 t
2.7   Avalanched Representation of the Cutting Tool Geometry  
1 W% V5 I/ S) a in T-hand-S............................................................................................102
$ Z' y1 m7 i1 S- ~ 2.7.1  Basic Tool Geometry .................................................................102
9 E% E/ X/ o# D, @, {2.7.2   Determination of Cutting Tool Angles Relation % y" G( f. a8 N2 E. N
  for a Wiper Cutting Insert ..........................................................108
$ J1 ^- p- E% X. t3 x( B0 G  2.7.3   Determination of Cutting Tool Angles  
( I& P* n5 _' u5 z" ]   for a Single-point Tool ...............................................................110 ! z  v* Q9 o- A& U$ M8 r
  2.7.4   Flank Angles of a Dovetail Forming Tool .................................117 6 Q+ C; v& K8 E0 g, t. Q
  2.7.5   Summation of Several Motions..................................................119 & B- `! K( R# A- Y- h
References......................................................................................................125 1 H1 c( i. I, e: @: Z* Q8 O
3  Fundamentals of the Selection of Cutting Tool Geometry Parameters...127 ' f6 e' l  Y2 O
3.1   Introduction ...........................................................................................127 5 z! ?; ^4 }" S
3.2   General Considerations in the Selection of Parameters  - X* u) f9 H; |& J
  of Cutting Tool Geometry .....................................................................129
8 h7 Q0 E8 e  q0 [5 A6 t. S: | 3.2.1 Known Results .............................................................................129 . W1 N! @- r9 n2 T( b% a
  3.2.2 Ideal Tool Geometry and Constrains............................................130
5 w2 n2 ~- b  a: l. I  3.2.3 Practical Gage for Experimental Evaluation of Tool Geometry...132 0 K+ {0 u1 Q( O. s3 k; Z
3.3   Tool Cutting Edge Angles .....................................................................132
" o( A" X2 v2 o/ l; L 3.3.1  General Consideration................................................................132 . y% \0 F4 X% m6 A3 Z4 ^' u0 B
  3.3.2   Uncut ChipT in Non-free Cutting ..............................................134 : Z" m$ v8 P$ L# S! k0 X, L, W+ @
  3.3.3   Influence on the Surface Finish..................................................142 ! k# Q0 W7 D( |# O% t# R* N
3.3.4  Tools with κr > 90°.....................................................................144 $ F% p/ a6 V7 Y, ~& x% t3 @
  3.3.5   Tool Minor Cutting Edge Angle ................................................147
8 v8 I: t, m3 A6 I" _  `* m' b3.4.  Edge Preparation ...................................................................................161
8 r* X0 W. K0 b. |% ~# ~0 b3 N 3.4.1  General .......................................................................................161 . s# G) r, w9 B
  3.4.2   Shape and Extent........................................................................163
% y1 D4 L; I3 p 3.4.3  Limitations .................................................................................163 % s+ q9 P6 E/ g
  3.4.4   What Edge Preparation Actually Does.......................................169
2 F  o% e9 Z4 x( @* l3.5   Rake Angle............................................................................................171 ' V; y+ _( Y2 ~% h5 w
3.5.1  Introduction................................................................................171
" k3 L: L, n- ^" l  3.5.2   Influence on Plastic Deformation and Generazliations ..............175
" r- Z' j5 A9 t+ d' z# _  3.5.3   Effective Rake Angle .................................................................183
! H2 ?& _! i; Q7 r  3.5.4   Conditions for Using High Rake Angles....................................189
- E' }" N- Y  a  Y- s/ E+ r* B6 c  W3.6   Flank Angle ...........................................................................................191
2 @& ~, v4 K4 F7 i; e3.7   Inclination Angle...................................................................................193 ' I; N) _  a* P" W! h& C
      3.7.1   Turning with Rotary Tools.........................................................195
4 x; B6 i  v: {( ^ 3.7.2  Helical Treading Taps and Broaches..........................................197
) j; r* ?. W- P) r 3.7.3  Milling Tools..............................................................................198
4 T2 P- v1 E/ D+ BReferences......................................................................................................201 6 H5 i1 ~% x! W" L4 v
4   Straight Flute and Twist Drills ...................................................................205
7 f" Z, g0 g& x, @1 p4.1   Introduction ...........................................................................................205 5 e9 f3 h3 b. W. j$ O$ U
4.2   Classification.........................................................................................206 5 M& ^4 S* E) ]9 K3 l+ j
4.3   Basic Terms...........................................................................................208
/ Y' f  W+ j$ l  Y( S# e9 a! ]4.4   System Approach ..................................................................................211 : Q2 \* l0 W7 f# T2 H( ~
4.4.1  System Objective .......................................................................212 & {6 ?. V' x. d
4.4.2  Understanding the Drilling System............................................212   C& H# N0 K/ K- \4 y' I6 r) }
  4.4.3.  Understanding the Tool..............................................................212 2 P/ S$ F8 X2 r7 q1 {
4.5.  Force System Constrains on the Drill Penetration Rate ........................213
: S! r: F, _4 E2 }( L* G  4.5.1   Force-balance Problem in Conventional Drills ..........................213
6 P$ w( d8 W9 {* y- n9 A  4.5.2   Constrains on the Drill Penetration Rate....................................218 * i  L; [+ D! q: ?6 \
4.5.3  Drilling Torque ..........................................................................219
: I$ z4 p, G6 y. Q 4.5.4  Axial Force.................................................................................220 ! e; r& Z: Z& h/ [
  4.5.5   Axial Force (Thrust)-torque Coupling .......................................221
# [; e- L/ S" p; r  j9 T4.6   Drill Point ..............................................................................................223 : }1 V; ?/ K/ I/ O; l5 d/ h$ L$ g, C
4.6.1  Basic Classifications ..................................................................223 " Y' P# I/ R* M# y1 i
  4.6.2   Tool Geometry Measures to Increase the Allowable  2 l, ]: U- ~6 g" u8 t& @1 H
Penetration Rate ....................................................................................224
( ]* N/ P" a5 X# Q+ ~4.7   Common Design and Manufacturing Flaws..........................................259
! Z3 l$ A9 \  R, ?/ s( B  4.7.1   Web Eccentricity/ Lip Index Error.............................................260
) J' O; z: }. `+ O( a  4.7.2   Poor Surface Finish and Improper Tool Material/Hardness.......261 7 A- C% E' q5 y; y9 P5 o3 B
4.7.3  Coolant Hole Location and Size.................................................263 0 K, ]! x* z8 a8 m% d7 m2 d9 A/ t
4.8   Tool Geometry ......................................................................................267
. F# {! t# a0 A7 _  4.8.1   Straight-flute and Twist Drills Particularities............................269
& a+ P$ X! |8 N, B6 a9 a5 p  4.8.2   Geometry of the Typical Drill Point ..........................................270
9 u% P9 Q' T0 ^; w  v2 ~6 T  W; Q  4.8.3   Rake Angle.................................................................................272
" t0 D6 [, V6 H  J4 w0 ^9 q  4.8.4  Inclination Angle .........................................................................280 % U6 F' N, D4 p
4.8.5  Flank Angle................................................................................281 , d4 r2 s+ l5 ~4 D. M# [" n
  4.8.6   Geometry of a Cutting Edge Located at an Angle  
' H* K& h( h. Y& e; r9 z   to the y0-plane ............................................................................292 8 h3 A0 q+ W) O0 ]' j9 n+ ~
4.8.7  Chisel Edge ................................................................................295
& H3 k" Q; J4 O6 p  a( d  4.8.8   Drill Flank is Formed by Two Planes: Generalization...............306
6 _( ^& s2 p; R+ K7 W' Z: ]- l) f  4.8.9   Drill Flank Angle Formed by Three Planes ...............................310 $ P5 H& S# n' u1 o! K2 ^; X
4.8.10  Flank Formed by Quadratic Surfaces.........................................313
, f0 `) j( R0 B1 U4.9   Load Over the Drill Cutting Edge .........................................................324 4 G6 N, ]. S+ |
   4.9.1   Uncut Chip Thickness in Drilling ..............................................325
. [7 u" U; N6 \  4.9.2   Load Distribution Over the Cutting Edge ..................................327
7 [# F+ F8 U0 ?1 L( `: w4.10  Drills with Curved and Segmented Cutting Edges ................................328
/ ^, h& ^& W+ |- p) K  4.10.1 Load of the Cutting Part of a Drill with Curved Cutting Edges .329 4 n8 h  E' q7 x5 p$ t* a
  4.10.2 Rake Angle.................................................................................332
2 d5 `$ i  x1 V3 k! G/ V% iReferences......................................................................................................337
  l# e( M& y3 p5   Deep-hole Tools............................................................................................341 % Z) ^7 N+ H' r
5.1   Introduction ...........................................................................................341 $ P7 A- o4 }) c2 C) Z' W% {
5.2   Generic Classification of Deep-hole Machining Operations.................343
( W( u7 H, b* v" f; V) a5.3   What Does ‘Self-piloting Tool’ Mean? .................................................345 : n8 r1 J- t/ I
  5.3.1   Force Balance in Self-piloting Tools..........................................345 9 W& m. W( ?* D4 `
5.4   Three Basic Kinematic Schemes of Drilling .........................................350 / k4 [- t( W8 }. X
  5.4.1   Gundrill Rotates and the Workpiece is Stationary .....................351 6 ~5 Y! |! Z  v5 R0 b  t0 M. c
5.4.2  Workpiece Rotates and the Gundrill is Stationary .....................352
( s2 l8 L, \6 K6 u 5.4.3  Counterrotation ..........................................................................352 % z, V; R( b- O% ~( u; R! g* U
5.5   System Approach ..................................................................................353 / V2 K9 F: {! M5 L1 V
  5.5.1   Handling Tool Failure ................................................................353 ) ^! P( r9 R9 E2 P6 N4 g
5.5.2  System Considerations ...............................................................354 : c2 H2 a- t+ R  W2 b# }
5.6   Gundrills................................................................................................362 9 [7 x2 @! S& x% K; y* J7 o
5.6.1  Basic Geometry..........................................................................362 , N* \0 J) C" b7 U. C; y* T1 }
5.6.2  Rake Surface ..............................................................................365 . F4 T$ V: ^. s1 i
  5.6.3   Geometry of Major Flanks .........................................................370 $ B6 S# r: T8 [3 M2 C" U  I8 q& G
5.6.4  System Considerations in Gundrill Design ................................390
( s* P$ E% F6 ]" I. U5.6.5   Examplification of Significance of the High MWF Pressure
. O# W8 K, x7 U, p2 q! [8 w5 y/ ]  in the Bottom Clearance Space ..................................................423
! @. s7 J4 S$ o$ z5 s; k$ Q  5.6.6   Example of Experimental Study ................................................425 $ ]/ B3 k5 y% T6 V! H& B* R# w
  5.6.7   Optimization of Tool Geometry.................................................439 5 m$ z) }3 B- _, {, [, w+ B
References......................................................................................................440
6 o* ^4 {: o' B0 j& [# t3 ?- n, W* qAppendix A  - h$ h" m4 I; ^; A' D! M5 C
Basic Kinematics of Turning and Drilling.......................................................443
; k; \$ Z, \/ v& |A.1   Introduction ...........................................................................................443 % W# t9 O$ J: J! w! t. f. ^; P. [
A.2  Turning and Boring ...............................................................................444   y9 `" t3 ^. e" }3 B
  A.2.1  Basic Motions in Turning...........................................................444 9 p3 k9 y1 l' \- r  L3 S* ]. o9 w4 P
  A.2.2  Cutting Speed in Turning and Boring ........................................448
: i3 Y; P1 N& Q4 C! S  A.2.3  Feed and Feed Rate ....................................................................448
- C" m6 Z- m2 n2 W( r8 \  A.2.4  Depth of Cut...............................................................................449 - z) v. T( N& O4 L  _! ]9 ]
A.2.5  Material Removal Rate ..............................................................449
% u) x. o2 x: { A.2.6  Resultant Motion........................................................................450 $ x0 r8 D' b. |# Y
A.3  Drilling and Reaming ............................................................................450 . k3 o' `: N' T: p
A.3.1  Basic Motions in Drilling...........................................................450
+ |4 i& B" u& S5 v A.3.2  Machining Regime.....................................................................451
& x- c+ T/ ]8 D5 |  e/ TA.4  Cutting Force and Power .......................................................................453
' o6 V4 {+ {; w  A.4.1  Force System in Metal Cutting...................................................453 % N5 G0 }$ G1 `$ |, L1 a4 P2 q
  A.4.2  Cutting Power ............................................................................454
$ C. G2 Q8 N! k0 j4 m A.4.3  Practical Assessment of the Cutting Force.................................455
! C( O1 O. ?1 w( tReferences......................................................................................................461 ' G% h6 r0 S+ J* {! D
Appendix B  
& R! ?# D& a4 ^2 Q1 lANSI and ISO Turning Indexable Inserts and Holders.................................463 / m' l+ M! t! n' P* h# a5 `. E/ |0 j
B.1   Indexable Inserts ...................................................................................463
1 }  e* q6 Q' p7 B( R  B.1.1  ANSI Code .................................................................................464 8 V) _5 V1 v$ m  G
B.1.2  ISO Code....................................................................................471
4 p: X+ K  P# R2 r+ S' V3 E  B.2 Tool Holders for Indexable Inserts (Single Point Tools) ......................491
3 C/ V1 b; h, [, l( s  U" [  B.2.1   Symbol for the Method of Holding Horizontally Mounted  
  H! S5 ~$ r  B- C( p4 k/ f! I Insert – Reference Position (1) ..............................................................492 & |) o/ f/ r" E0 g. M6 ^
  B.2.2   Symbol for Insert Shape – Reference Position (2) .....................493   g; ?0 @/ x+ a0 u: \; C$ T$ g0 m1 X
  B.2.3   Symbol for Tool Style – Reference Position (3) ........................493 : p0 S9 `7 ]5 ~$ B- f
  B.2.4   Letter Symbol Identifying Insert Normal Clearance –    H: l% y$ Q9 T9 z0 H
   Reference Position (4)................................................................494 2 t1 Z& M$ P* {
  B.2.5   Symbol for Tool Hand – Reference position (5) ........................494 6 |0 I# ^+ ~: ^' d) d, o
  B.2.6  Symbol for Tool Height (Shank Height of Tool Holders  0 q8 x' @0 g  d: R- i
    and Height of Cutting Edge) - Reference Position (6) ...............494
: X9 e' U4 D/ G: I6 v* \  B.2.7  Number Symbol Identifying Tool Holder Shank Width –  2 x$ V: j, L5 k5 O8 g, E4 f
   Reference Position (7)................................................................495 7 ^3 Y. T, J( N2 i. \, `
  B.2.8  Number Symbol Identifying Tool Length –  % m9 C, @: u- C, {2 R* @" v  B
   Reference Position (8)................................................................495 ! s$ X3 t  D  ?7 b
  B.2.9   Letter Symbol Identifying Indexable Insert Size –  
( i* J6 `8 _0 ]+ x; d   Reference Position (9)................................................................497 8 q8 K" [4 @5 }) V
Appendix C  
. ]  x$ J8 M5 JBasics of Vector Analysis ..................................................................................499
3 s# u" R3 d& jC.1   Vectors and Scalars ...............................................................................499
  _9 c, }: w- _) ZC.2   Definition and Representation...............................................................500
* l3 V" j. m4 w* q% P+ o C.2.1  Definitions..................................................................................500 1 X1 r- ^& S+ a! j1 J/ b1 j) W
C.2.2  Basic Vector Operations ............................................................503 , {- y- Q$ |* q# [& i) X$ q
C.3   Application Conveniences.....................................................................509
0 C9 ~1 n; g1 T# A' s/ z( J8 m* Y1 gC.4  Rotation: Linear and Angular Velocities...............................................511
( v! Y9 r* c1 y$ \+ \. |  C.4.1   Planar Linear and Angular Velocities ........................................511 + i* y* H5 }, B/ C
  C.4.2   Rotation: The Angular Velocity Vector .....................................515 8 ^9 c6 l$ h! l) b7 S
References ...........................................................................................................518 ( N& L& @! ?- ^3 o
Appendix D  0 }( U4 l7 w. \2 j# |$ Q/ T$ A
Hydraulic Losses: Basics and Gundrill Specifics............................................519
. g0 s* {9 J2 ?9 d! GD.1  Hydraulic Pressure Losses – General ....................................................519
" S9 B7 M" v2 a; K0 ?0 X/ p5 K D.1.1  Major Losses: Friction Factor ....................................................520 % R' ~8 c( S' n
  D.1.2  Minor Losses (Losses Due to Form Resistance) ........................521 2 B8 {; E" I- @3 M! K# T" B; N
D.2  Concept of the Critical MWF Velocity and Flow Rate .........................521
$ S* T6 V. C) {6 S% Q3 _  D.2.1  MWF Flow Rate Needed for Reliable Chip Transportation.......522 7 I+ f+ ?, g* i- o6 G0 k" {
  D.2.3  Example D.1...............................................................................527
) g1 v8 V# z* t4 F, M) a1 PD.3   Inlet MWF pressure...............................................................................528
* M3 c# P. M$ {5 _% p% c! |4 ID.4  Analysis of Hydraulic Resistances ........................................................532 1 m' q+ q" A) P; R
  D.4.1  Analysis of Hydraulic Resistances Over Which the Designer  
. ^0 h0 L; f- ?9 g- E+ b1 ]    Has No or Little Control ............................................................532
. C  x4 A3 W$ L  i% |  D.4.2  Variable Resistances Over Which the Designer Has Control ....535 . U: B0 U3 r1 K1 Z+ m6 u; J  D
D.5   Practical Implementation in the Drill Design ........................................539
  S# d# l, u7 r( D7 V3 |References ..........................................................................................................543 " C) b1 s. u' D/ D! l2 L+ N
Appendix E ' s8 l# R4 P' F7 Q7 A) Z6 w9 _& I* w2 U
Requirements and Examples of Cutting Tool Drawings................................545 0 w7 u. X. ~# {  f+ X
E.1   Introduction ...........................................................................................545 8 U( z: j$ Z, N9 u8 Y
E.2   Tool Drawings – the Existent Practice ..................................................546
; E+ v& |3 j  F- JE.3   Tool Drawing Requrements ..................................................................548
& \) T" C! a4 g  Z7 G+ KE.4   Examples of Tool Drawing ...................................................................553 3 v% B- k, `: B
References ..........................................................................................................559 * p$ J) o! K4 D* R6 U) S( ]8 j$ w
Index…………………………………………………………………………….561 , l; v6 ~+ W, t( z

: ^. T" G/ v2 {( t+ ~. L9 Q
; Q) U* A& E, E5 g  c, {# C
发表于 2011-6-25 13:07:50 | 显示全部楼层
都是些神马?
发表于 2011-6-25 13:33:41 | 显示全部楼层
埋头挖矿中。。。。。。。。。
发表于 2011-6-26 15:14:56 | 显示全部楼层
好东西啊。。。只是,刀具不是我的工作。。。顶起,不沉。。。
 楼主| 发表于 2011-6-26 18:10:54 | 显示全部楼层
专业人士自有看法。
发表于 2011-6-27 18:42:38 | 显示全部楼层
好东西啊,英文的,看着太费劲了
发表于 2011-6-27 21:53:22 | 显示全部楼层
从网上查找这本书是Springer Series in Advanced Manufacturing丛书中的一本# K' w# `: H  v
请问这套丛书共包含哪几本书
您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

Archiver|手机版|小黑屋|机械社区 ( 京ICP备10217105号-1,京ICP证050210号,浙公网安备33038202004372号 )

GMT+8, 2025-9-18 16:59 , Processed in 0.073400 second(s), 18 queries , Gzip On.

Powered by Discuz! X3.5 Licensed

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表