找回密码
 注册会员

QQ登录

只需一步,快速开始

搜索
查看: 8519|回复: 19

Geometry_of_Single_point_Turning_Tools_and_Drills

[复制链接]
发表于 2011-6-23 22:58:22 | 显示全部楼层 |阅读模式
本帖最后由 机器鼠 于 2011-6-23 23:18 编辑 8 a& ]# t- E6 Q9 ?- b2 Z2 q

  Q' Y8 s) N) b# _$ Q$ LGeometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Applications.pdf# K4 |3 [8 I" K
有要的吗?刀具,细节,很到位。英文版。2 ^% s8 l! `2 D; n. e' o
国内无人这么细研究的吧?

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 阅读权限: 90, 下载次数: 8, 下载积分: 威望 -10 点

7

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 7, 下载积分: 威望 -10 点

6

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 8, 下载积分: 威望 -10 点

5

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

4

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

3

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

2

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

140.75 KB, 阅读权限: 90, 下载次数: 7, 下载积分: 威望 -10 点

1

回复

使用道具 举报

发表于 2011-6-24 19:17:16 | 显示全部楼层
说什么的?
 楼主| 发表于 2011-6-24 22:02:25 | 显示全部楼层
Although almost any book and/or text on metal cutting, cutting tool design, and , y+ k$ g0 o# m8 a3 P
manufacturing process discusses to a certain extent the tool geometry, the body of 6 {' v3 y! D2 `) n
knowledge on the subject is scattered and  confusing. Moreover, there is no clear   A9 z& J1 y, y) \6 w
objective(s) set in the selection of the tool geometry parameters so that an answer ( I, X, l& d2 J4 F& l# |) R" `/ Z
to a simple question about optimal tool geometry cannot be found in the literature ) b7 a& E' _" m, M  ?
on the subject. This is because a criterion (criteria) of optimization is not clear, on + L" k4 b" g$ R6 c9 X
one hand, and because the role of cutting tool geometry in machining process ( B6 _# B& \2 T/ `* I. L, O
optimization has never been studied systematically, on the other. As a result, many / j/ }4 v, m  V' z) V' M5 r) t- R
practical tool/process designers are forced to use extremely vague ranges of tool . [9 i# ^- g7 k8 I
geometry parameters provided by handbooks. Being at least 20+ years outdated,
& l: g7 {( o' v5 H5 z( h; t3 zthese data do not account for any particularities of a machining operation including 4 K5 ?3 Y/ r& E
a particular grade of tool material, the condition of the machine used, the cutting
9 e8 K- @( N$ y" @fluid, properties and metallurgical condition of the work material, requirements to ) T% x6 x1 o) O7 ~. G4 K6 R
the integrity of the machined surface, etc.
) A' I) v( B1 s0 f$ m5 YUnfortunately, while today's professionals, practitioners, and students are - l! G9 `( g6 r6 ]9 d, v
interested in cutting tool geometry, they are doomed to struggle with the confusing
6 S* @7 u4 S0 b+ R* hterminology. When one does not know what the words (terms) mean, it is easy to 3 s+ R/ [  l7 o  K
slip into thinking that the matter is difficult, when actually the ideas are simple,
# V5 m2 D, h  veasy to grasp, and fun to consider. It is the terms that get in the way, that stand as a ( j9 n: t! A$ f, S! J2 i; P3 z: [
wall between many practitioners and science. This books attempts to turn those ( j3 ]. [* Z- j+ x4 m9 ?5 g$ u1 B
walls into windows, so that readers can peer in and join in the fun of proper tool   C1 q( Z" X6 v; G! ]) @
design. & Z, u3 L# R$ j3 m7 w: b- l
So, why am I writing this book? There are a few reasons, but first and foremost,
* r% j8 l* J" _7 dbecause I am a true believer in what we call technical literacy. I believe that
9 T5 h- U* d8 }" A  Beveryone involved in the metal cutting business should understand the essence and - T5 j) m. L" u0 o$ n# T; S" i
importance of cutting tool geometry. In my opinion, this understanding is key to
7 c+ ^: c; k7 T( V- cimproving efficiency of practically all machining operations. For the first time, this 3 w+ H- s4 ~2 q5 E- J! s
book presents and explains the direct correlations between tool geometry and tool 7 [- r% g2 c5 [4 c  f3 O, [
performance. The second reason is that I felt that there is no comprehensive book
* p  T# H' Z/ |2 R' C) F! _on the subject so professionals, practitioners, and students do not have a text from ' E$ r, e3 B# \- h
which to learn more on the subject and thus appreciate the real value of tool 0 F7 f& _/ J9 ]6 f) _( l
geometry. Finally, I wanted to share the key elements of tool geometry that I felt 5 G  e& p* k$ ]2 k: u3 O6 l
were not broadly understood and thus used in the tool design practice and in & |  w! V0 u6 X& O% }6 l7 y
optimization of machining operations in industry. Moreover, being directly
+ ~0 i0 s0 X# ^! k% Minvolved in the launch of many modern manufacturing facilities equipped with
! Q- a  F  {9 G6 o* tstate-of-the-art high-precision machines, I found that the cutting tool industry is not * B2 y! \) n  K4 _9 b; a, L) p
ready to meet the challenge of modern metal cutting applications. One of the key % @6 F5 S  l* P+ S
issues is the definite lack of understanding of the basics of tool geometry of
; i5 g( A9 e" O7 S# u2 jstandard and application-specific tools. ' @& Y0 o/ B" a( P  X
The lack of information on cutting tool geometry and its influence on the . i0 M, K4 ^, p+ J8 d/ B* {5 ]* \
outcome of machining operations can be explained as follows. Many great findings
/ L' S2 }) f  M$ ion tool geometry were published a long time ago when neither CNC grinding 4 g" B% `$ X5 s: T9 C
machines capable of reproducing any kind of tool geometry were available nor : v: R: \; G7 W' u0 T
were computers to calculate parameters of such geometry (using numerical 2 q! J6 z& Q  t4 e( y5 {* O$ E' u' D
methods) common. Manual grinding using standard 2- and 3-axis simple grinding
. b; J4 g; h: R$ V& ]6 }features was common so the major requirement for tool geometry was the simpler
; z4 w/ ^( A3 j$ D9 fthe better. Moreover, old, insufficiently rigid machines, aged tool holders and part - x" X3 G, z/ M4 j7 m5 ?/ E
fixtures, and poor metal working fluid (MWF) selection and maintenance levered
% K+ ^, H' G! Hany advancement in tool geometry as its influence could not be distinguished under . I& j% n, N( b) W
these conditions. Besides, a great scatter in the properties of tool materials in the
2 K: Z; ^: a7 k* S0 j+ Qpast did not allow distinguishing of the true influence of tool geometry. As a result, + D, ^; _. ?+ M) p, w
studies on tool geometry were reduced to  theoretical considerations of features of
/ Q& U1 c5 `& [+ a, Btwist drills and some gear manufacturing  tools such as hobs, shaving cutters, , k; I2 ^% P0 `) z7 Q
shapers, etc.  
$ D/ w+ t/ Q; l3 }3 ^Gradually, once mighty chapters on tool geometry in metal cutting and tool 2 V6 U& O& h  N/ u% F9 \# q
design books were reduced to sections of few pages where no correlation between ' o) P* L- N0 q
tool geometry and tool performance is normally considered. What is left is a
8 O  s; Q. ~. P1 L  x( Egeneral perception that the so-called “positive geometry” is somehow better than
' z( n* |# h& H$ L+ i" Y“negative geometry.” As such, there is no quantitative translation of the word
  |' N" X5 p0 i. X“better” into the language  of technical data although a great number of articles
- h; r0 N/ M8 @9 a8 owritten in many professional magazines discuss the qualitative advantages of
9 ~; Z  w9 t; U2 N“positive geometry.” For example, one popular manufacturing magazine article 8 B5 l( q0 `0 K1 w# G$ R8 L
read “Negative rake tools have a much  stronger leading edge and tend to push
! G% w5 R) Y) w/ }against the workpiece in the direction of the cutter feed. This geometry is less free 5 A. e& t; |, S* a" K
cutting than positive rakes and so consumes more horsepower to cut.” Reading % J2 `& l; l1 I0 D! X8 P! D' E
these articles one may wonder why cutting tool manufacturers did not switch their
: n. ~1 w+ |4 C: w$ e+ ptool designs completely to this mysterious “positive geometry” or why some of / a2 d# i8 v8 K) r1 T7 f, H+ R
them still investigate and promote negative geometry. 5 S3 J' E+ _2 Q$ K
During recent decades, the metalworking industry underwent several important * [( f& U0 U6 b' G4 g1 a
changes that should bring cutting tool geometry into the forefront of tool design : `* [( q" t. |6 e4 j0 N' ^; N
and implementation:
 楼主| 发表于 2011-6-24 22:03:42 | 显示全部楼层
1   What Does It Mean “Metal Cutting”? ...........................................................1 5 g1 w- [2 s* f5 t6 N- t
1.1   Introduction ...............................................................................................1
7 x9 P& p$ A6 v, E& @1.2   Known Results and Comparison with Other Forming Processes ..............2 ; B' \! e& `& z: H
  1.2.1   Single-shear Plane Model of Metal Cutting ...................................2 ) i' w$ Z5 h' ^& Y5 _5 p- T
  1.2.2   Metal Cutting vs. Other Closely Related Manufacturing  
: y6 W3 O+ H0 p6 W Operations .................................................................................................5 " R7 X  a  q0 n" z' ^) Z
1.3   What Went Wrong in the Representation of Metal Cutting?...................22 2 C& R9 j  Q" e& u, n; W
  1.3.1   Force Diagram..............................................................................23 6 B/ d7 s9 p0 G
  1.3.2   Resistance of the Work Material in Cutting.................................25
8 R# x; x9 t; ^$ D- O. I  1.3.3   Comparison of the Known Solutions for the Single-shear  4 u+ h5 s1 h7 @* y# x
  Plane Model with Experimental Results .................................................27 9 f8 |7 x: a% S0 Z( S8 [
1.4   What is Metal Cutting?............................................................................28
9 i/ C( t9 |0 L% t. K! H  1.4.1   Importance to Know the Right Answer........................................28
2 g  b9 |. C# N  {7 ]5 v2 f 1.4.2  Definition .....................................................................................28
" X: ^* h+ O* h9 b+ w# Y- @  1.4.3   Relevance to the Cutting Tool Geometry.....................................29
3 Q, j) d. E4 ~$ K) a$ q4 w6 e1.5   Fundamental Laws of Metal Cutting.......................................................32
. {0 i( t* p' R) E4 w8 q& T  1.5.1   Optimal Cutting Temperature – Makarow’s Law........................32
) ^* c) u/ W3 \$ b: {% \ 1.5.2  Deformation Law.........................................................................35
" {2 c( m4 E! v0 JReferences........................................................................................................50 2 r5 X0 }9 D2 c3 ^0 f8 w6 x
2   Basic Definitions and Cutting Tool Geometry,  " U* Y; M$ v* r8 ]) T! \9 J
Single Point Cutting Tools ............................................................................55
: U( y! D( g: @/ V2 u2.1   Basic Terms and Definitions ...................................................................55 0 w# n3 @  t. d' r
2.1.1  Workpiece Surfaces.......................................................................57
- o. o- K, M& r6 k 2.1.2  Tool Surfaces and Elements ..........................................................57
& ]9 B: T: A6 q 2.1.3  Tool and Workpiece Motions.......................................................57
4 [# g! u8 `. \- P 2.1.4  Types of Cutting ............................................................................58 " _  N7 O' C% f+ x* c
2.2   Cutting Tool Geometry Standards...........................................................60 7 \; C7 t$ g: U1 w) \$ j
2.3   Systems of Consideration of Tool Geometry ..........................................61
3 T. O3 a& R+ U0 |6 n! w/ @( ~' v2.4.  Tool-in-hand System (T-hand-S) .......................................................64' F; T5 g$ w0 S2 N7 m
  2.4.1   Tool-in-hand Coordinate System.................................................64 3 x5 q- R- i3 p
2.4.2  References Planes ........................................................................66 , H$ X; W3 D2 F& a. a; c
2.4.3  Tool Angles..................................................................................68 ! x# t  M+ g' [! z* k, ~
  2.4.4   Geometry of Cutting Tools with Indexable Inserts ......................74
, O& q3 }, j8 X* b4 K2 Z2.5   Tool-in-machine System (T-mach-S)......................................................84 $ A1 Z  H0 M, w% L: K; @$ o
2.5.1  Angles ..........................................................................................84
% Q. ?4 \- \9 r8 @& x  2.5.2   Example 2.3 .................................................................................88 . p  ?6 B; t* ^* e; v2 y: k1 @
2.6   Tool-in-use System (T-use-S) .................................................................90
5 t7 D0 {1 X" I+ Z9 R( n! {8 d 2.6.1  Reference Planes ..........................................................................91
: ]* T5 h2 N& t7 z. y- e 2.6.2  The Concept .................................................................................92
1 Q0 u- Y" L$ F& D; ~  2.6.3   Modification of the T-hand-S Cool Geometry .............................92 1 i0 M9 l( y3 y4 D
  2.6.4   Kinematic Angles.........................................................................98 1 n) N6 j, E, b' P) D' q8 K/ N: U
  2.6.5   Example 2.4 ...............................................................................100
6 G" e* h8 ^1 w# M# z* y1 u* V2.7   Avalanched Representation of the Cutting Tool Geometry  
# G; |& e$ O  K2 T* @7 A in T-hand-S............................................................................................102 1 J6 t& W; r0 H4 k
2.7.1  Basic Tool Geometry .................................................................102 5 S. [9 v5 R% m
2.7.2   Determination of Cutting Tool Angles Relation
4 U9 w0 x. u; ]  W  for a Wiper Cutting Insert ..........................................................108
2 R6 x& C& v; k$ ~  2.7.3   Determination of Cutting Tool Angles  ( O  T/ ?0 S4 H1 z9 `# Z1 A. P
   for a Single-point Tool ...............................................................110 ! V- q" K' h, d5 |. L
  2.7.4   Flank Angles of a Dovetail Forming Tool .................................117 1 P. R! P! G* x+ c5 l+ k( m1 ^& ?
  2.7.5   Summation of Several Motions..................................................119 2 V& `1 d' ~) K& K/ f( s2 m% a9 ?( r
References......................................................................................................125
% a3 X7 J& x+ F0 W9 a1 e3  Fundamentals of the Selection of Cutting Tool Geometry Parameters...127
; t/ f4 T4 ^: M- {3.1   Introduction ...........................................................................................127
1 t( B1 O, c# l4 F9 L3.2   General Considerations in the Selection of Parameters    t% |' ?; |" _& {. k" K/ ~1 i
  of Cutting Tool Geometry .....................................................................129 - A3 q2 q7 r' M' f% Z. @1 s
3.2.1 Known Results .............................................................................129 7 h# X' K7 p; ~5 e* y9 i
  3.2.2 Ideal Tool Geometry and Constrains............................................130 6 U; t0 m( I) K
  3.2.3 Practical Gage for Experimental Evaluation of Tool Geometry...132 * |2 Z+ }) i0 c( [% D
3.3   Tool Cutting Edge Angles .....................................................................132
! Q. d9 V1 q+ W  v7 [$ t+ j" y1 u+ A 3.3.1  General Consideration................................................................132
6 I8 T1 m& W, l  3.3.2   Uncut ChipT in Non-free Cutting ..............................................134 , _) k4 Z. D" W' g5 h- f
  3.3.3   Influence on the Surface Finish..................................................142
* X: O% B: t6 G6 x# m3 u  A$ F: U' n 3.3.4  Tools with κr > 90°.....................................................................144
8 \9 {# I2 a! y8 ?, Y' n: \  3.3.5   Tool Minor Cutting Edge Angle ................................................147
8 n" m% y) [+ e* K7 @7 }* T3.4.  Edge Preparation ...................................................................................161 $ r* \4 f) f/ Q" D
3.4.1  General .......................................................................................161
' s  Q; R! Z* |  3.4.2   Shape and Extent........................................................................163 7 s4 X" k7 w+ g/ M  x  ~
3.4.3  Limitations .................................................................................163
) T  d; h: H- W) M+ {* B  3.4.4   What Edge Preparation Actually Does.......................................169 8 [+ [2 u$ \& {  @3 O
3.5   Rake Angle............................................................................................171
% Y9 |8 }& S6 h; S) b" s 3.5.1  Introduction................................................................................171 $ \9 v" r2 c* C- H3 t1 I
  3.5.2   Influence on Plastic Deformation and Generazliations ..............175 * g& r0 q" q( C, C( ?1 H
  3.5.3   Effective Rake Angle .................................................................183
# S" ]" G+ j( H( K" ]  3.5.4   Conditions for Using High Rake Angles....................................189 1 I% E+ O6 W! f, J, L! D
3.6   Flank Angle ...........................................................................................191 8 d. A$ n1 v' f6 U" D; }
3.7   Inclination Angle...................................................................................193 6 @: o& ?" F0 c2 k- t7 @
      3.7.1   Turning with Rotary Tools.........................................................195 1 K4 |: R$ s( C. Z! p$ k
3.7.2  Helical Treading Taps and Broaches..........................................197
  V+ W: b8 E* T! W/ H4 m2 Y 3.7.3  Milling Tools..............................................................................198 % I( Y+ s! k: y' t7 e+ N) O$ H
References......................................................................................................201 4 u5 M& C1 @: |8 K4 E: H
4   Straight Flute and Twist Drills ...................................................................205
# ^/ g9 {/ X1 P$ x4.1   Introduction ...........................................................................................205
* H- M$ e1 N' [+ s7 H' V6 [5 @4.2   Classification.........................................................................................206
3 x7 U; `* f. `3 |4.3   Basic Terms...........................................................................................208 ' X% e- B! _2 ^3 ~1 V( [1 ^
4.4   System Approach ..................................................................................211 5 E$ [! C: @! ^5 A  h8 n
4.4.1  System Objective .......................................................................212
0 I4 q/ D: c. ]2 K! ~  ^( B$ S 4.4.2  Understanding the Drilling System............................................212
6 A& d: Y1 J) x7 F& X9 V# i  4.4.3.  Understanding the Tool..............................................................212 & e7 p6 F1 Q& [4 _& T0 Y5 h
4.5.  Force System Constrains on the Drill Penetration Rate ........................213
+ P4 ?- o; ~+ y' ~' G7 C$ K: @  4.5.1   Force-balance Problem in Conventional Drills ..........................213
: K  l* ]7 \/ H4 E5 h  4.5.2   Constrains on the Drill Penetration Rate....................................218   [8 F7 L( z! \% |, y4 V
4.5.3  Drilling Torque ..........................................................................219 ( _/ E3 H1 F4 L3 v# ^6 d" l
4.5.4  Axial Force.................................................................................220 ; c6 H9 J0 q3 x8 B% V! i1 \
  4.5.5   Axial Force (Thrust)-torque Coupling .......................................221 3 ]; R  n9 N+ E- M% ]
4.6   Drill Point ..............................................................................................223 + Q! ?/ M& l4 _8 G. z
4.6.1  Basic Classifications ..................................................................223 ) \, a* j$ B3 I9 b% I4 }4 `0 c9 q
  4.6.2   Tool Geometry Measures to Increase the Allowable  * r- X7 Z: @6 F4 j% I2 @  }
Penetration Rate ....................................................................................224 ; v% e6 F' P; U4 J- N! r; ]
4.7   Common Design and Manufacturing Flaws..........................................259
4 J! E2 Z3 f$ _9 R1 S# Q  4.7.1   Web Eccentricity/ Lip Index Error.............................................260 , X  L7 X2 E1 I) O. ]- [7 ]) ~
  4.7.2   Poor Surface Finish and Improper Tool Material/Hardness.......261
+ {5 ]; H* V# D* @/ N4 Z 4.7.3  Coolant Hole Location and Size.................................................263
, j* N) K5 G! q% O; H: B; j4.8   Tool Geometry ......................................................................................267
. P- P) \* b# `2 Q2 P  4.8.1   Straight-flute and Twist Drills Particularities............................269 : _' |( N$ A. Q2 [1 j
  4.8.2   Geometry of the Typical Drill Point ..........................................270 % B2 q$ D1 p3 U
  4.8.3   Rake Angle.................................................................................272
6 U# X7 O6 O& }  4.8.4  Inclination Angle .........................................................................280
9 l* r; K9 J$ n6 Z. N* r 4.8.5  Flank Angle................................................................................281 / M" N' ^6 e! H# ]& b- d3 S# O
  4.8.6   Geometry of a Cutting Edge Located at an Angle  
9 j9 h! H% |' b2 F+ b   to the y0-plane ............................................................................292
7 Z5 H2 ~5 y! U# `9 `2 Z' i9 O 4.8.7  Chisel Edge ................................................................................295 , l* N- T) [4 S  `
  4.8.8   Drill Flank is Formed by Two Planes: Generalization...............306 # H+ S! t- C: R
  4.8.9   Drill Flank Angle Formed by Three Planes ...............................310 ( m! A$ `' W$ W5 y$ f  ]( N1 `. y
4.8.10  Flank Formed by Quadratic Surfaces.........................................313 - R7 v$ a0 u. W' c- D' Y8 B
4.9   Load Over the Drill Cutting Edge .........................................................324
& }. k2 O- w: P* W7 T. I3 T! `1 d   4.9.1   Uncut Chip Thickness in Drilling ..............................................325 ' u: B/ V- G, t# v; D* _0 M* U
  4.9.2   Load Distribution Over the Cutting Edge ..................................327
/ f3 {4 M8 N6 h8 Q8 ~% ^4.10  Drills with Curved and Segmented Cutting Edges ................................328 - c# |. \$ y2 A8 J  T1 I
  4.10.1 Load of the Cutting Part of a Drill with Curved Cutting Edges .329 6 j8 v$ C' a. ?9 B* M# K* I
  4.10.2 Rake Angle.................................................................................332
% H) |8 |) b8 P+ M" o' \' hReferences......................................................................................................337 ! u8 q4 X# w5 ^# z9 f7 q6 A
5   Deep-hole Tools............................................................................................341
6 z  {4 X7 p& d7 S5.1   Introduction ...........................................................................................341 6 ?- {+ s9 b: J( G" ?6 w
5.2   Generic Classification of Deep-hole Machining Operations.................343 0 l: }+ W7 U) `9 t: A
5.3   What Does ‘Self-piloting Tool’ Mean? .................................................345 & W4 U2 L# o: ~. f, q- Z- F
  5.3.1   Force Balance in Self-piloting Tools..........................................345 1 m  S& Z) J7 Z1 Y; i" p2 M
5.4   Three Basic Kinematic Schemes of Drilling .........................................350
- z" D/ K) t" p0 ^  V* q  5.4.1   Gundrill Rotates and the Workpiece is Stationary .....................351
% V4 [% P8 Z" N; b3 [, f$ ~2 z 5.4.2  Workpiece Rotates and the Gundrill is Stationary .....................352
9 [3 M$ F. H5 W6 T4 c- C 5.4.3  Counterrotation ..........................................................................352
- @, Z: ?; s" T& `4 h5.5   System Approach ..................................................................................353
) u6 N* J+ w% p3 p) Q, i0 r, @5 q  5.5.1   Handling Tool Failure ................................................................353
* L* X  @/ X2 b" g 5.5.2  System Considerations ...............................................................354 " B  t/ w6 B) K" T2 o. s
5.6   Gundrills................................................................................................362 4 I  `4 Q) e; B
5.6.1  Basic Geometry..........................................................................362
# R# _6 n5 q; n% J: Q 5.6.2  Rake Surface ..............................................................................365
& w% z5 y/ c' x5 k  5.6.3   Geometry of Major Flanks .........................................................370
* n( o/ o6 ?$ o5 D 5.6.4  System Considerations in Gundrill Design ................................390
( Y7 _' L" o, i+ Z5.6.5   Examplification of Significance of the High MWF Pressure $ M/ c2 F8 b- B( A4 o5 u  F3 a" F& T. x
  in the Bottom Clearance Space ..................................................423 % F; X) w7 f3 I
  5.6.6   Example of Experimental Study ................................................425
: s/ |/ H1 n' z  5.6.7   Optimization of Tool Geometry.................................................439 0 o2 h9 t4 Q: f: f5 Z0 @4 x! O) \( z
References......................................................................................................440
2 x( L9 [: h% y, Y9 G% N6 P& pAppendix A  
" r- l& v, ^7 p( o! m' e2 p3 i+ N8 GBasic Kinematics of Turning and Drilling.......................................................443 $ N/ C5 a1 T7 V5 P+ p: I& O2 }+ I& c
A.1   Introduction ...........................................................................................443
6 |$ f8 X# t+ B5 i/ t- b- sA.2  Turning and Boring ...............................................................................444 % R! s, d- d* Q+ k" Y3 [' S2 r, W0 t
  A.2.1  Basic Motions in Turning...........................................................444 % O  `1 ?9 s# f# a8 ~& u9 L; G
  A.2.2  Cutting Speed in Turning and Boring ........................................448
: w5 U2 U. ~  M4 }7 c5 m  A.2.3  Feed and Feed Rate ....................................................................448 " d3 i. c/ l9 F& A1 p
  A.2.4  Depth of Cut...............................................................................449 - l7 i4 V+ O0 V& @- E1 d
A.2.5  Material Removal Rate ..............................................................449 3 F5 y4 a7 ]! m- _" s
A.2.6  Resultant Motion........................................................................450   c# @! K# N! \$ k& U/ i
A.3  Drilling and Reaming ............................................................................450 3 Z$ r- j6 ?! W8 v6 p5 S; [
A.3.1  Basic Motions in Drilling...........................................................450
3 E( T0 D5 c( Q( V/ E; B/ M$ q: K A.3.2  Machining Regime.....................................................................451 ; `" V. t# a8 a# U
A.4  Cutting Force and Power .......................................................................453 $ X4 y6 ~' }* B4 N& }
  A.4.1  Force System in Metal Cutting...................................................453 6 q( [* g0 J+ t7 L
  A.4.2  Cutting Power ............................................................................454
& Q. @! v! F$ F/ j5 y5 F A.4.3  Practical Assessment of the Cutting Force.................................455 7 V" c( F' {/ n# W
References......................................................................................................461
9 _" F0 n2 n5 D, J" K$ l5 M/ eAppendix B  * g$ m1 `3 l, y8 u2 d
ANSI and ISO Turning Indexable Inserts and Holders.................................463 9 `3 W+ t7 J' ]8 n7 ~2 m
B.1   Indexable Inserts ...................................................................................463   Z" O# W$ {' t+ f+ F
  B.1.1  ANSI Code .................................................................................464
& w( I$ N0 I" Y5 }& [ B.1.2  ISO Code....................................................................................471
2 I% Z3 F5 K  i# E2 q( I. ?  B.2 Tool Holders for Indexable Inserts (Single Point Tools) ......................491 & w) g+ H$ r" B; _
  B.2.1   Symbol for the Method of Holding Horizontally Mounted  
! I# A& `) F4 T/ Z Insert – Reference Position (1) ..............................................................492 % `$ i! j. V  }
  B.2.2   Symbol for Insert Shape – Reference Position (2) .....................493
& s- y$ m/ a! R% f6 n6 \  B.2.3   Symbol for Tool Style – Reference Position (3) ........................493
% Q4 h, J1 r( `; J  B.2.4   Letter Symbol Identifying Insert Normal Clearance –  
9 z* {$ Q& Q0 B& Q1 K   Reference Position (4)................................................................494
+ _/ T3 m8 p! W. k9 z9 t  B.2.5   Symbol for Tool Hand – Reference position (5) ........................494 4 L: Y: M- m; ~7 L2 O
  B.2.6  Symbol for Tool Height (Shank Height of Tool Holders  7 S) D" r; [! e. d
    and Height of Cutting Edge) - Reference Position (6) ...............494 ) t/ X( I* V% k7 g5 d5 O
  B.2.7  Number Symbol Identifying Tool Holder Shank Width –  
( E+ g; ^) r* k4 }' q/ j4 i   Reference Position (7)................................................................495 1 t1 A  d* v) W' F: X$ m
  B.2.8  Number Symbol Identifying Tool Length –  
6 K1 `( I) q$ X. ^5 [   Reference Position (8)................................................................495
6 X* t% C% D* N& m( }0 L- {  B.2.9   Letter Symbol Identifying Indexable Insert Size –  
6 h: G* t) Q. }. `# M   Reference Position (9)................................................................497
+ U5 H8 H* b# d8 aAppendix C  , c4 \& _1 B) S: Z$ L
Basics of Vector Analysis ..................................................................................499
9 L" Q7 `2 \+ Z7 j  zC.1   Vectors and Scalars ...............................................................................499 & L) S& O9 e' U2 X( w# b
C.2   Definition and Representation...............................................................500
2 Q; A! t  C) R, `# D6 z C.2.1  Definitions..................................................................................500 5 F1 y- B  ^! O& H$ {
C.2.2  Basic Vector Operations ............................................................503
$ A2 y& z2 i9 _8 F1 g9 gC.3   Application Conveniences.....................................................................509
$ {- h+ ]9 Z5 @0 D3 B* k8 vC.4  Rotation: Linear and Angular Velocities...............................................511 6 i6 `! c+ M$ {' _$ }# H
  C.4.1   Planar Linear and Angular Velocities ........................................511 + U5 o* [( ]' Z. |; }$ f- I" n7 v/ G" W
  C.4.2   Rotation: The Angular Velocity Vector .....................................515
* g9 {& X- e; S8 |% KReferences ...........................................................................................................518
0 j4 H6 X: y7 @. r( [4 y( p; d( i$ iAppendix D  5 u  G& m7 L+ g6 ~2 _2 S2 |8 o1 ?; \$ L
Hydraulic Losses: Basics and Gundrill Specifics............................................519
1 J+ ?' n' o7 q% k/ eD.1  Hydraulic Pressure Losses – General ....................................................519
1 g/ @, q% D# e1 c3 C3 C D.1.1  Major Losses: Friction Factor ....................................................520
/ {+ V. z6 y7 a* ]# Z4 h. c  D.1.2  Minor Losses (Losses Due to Form Resistance) ........................521
7 V8 m- D! ]# K2 M) w8 x D.2  Concept of the Critical MWF Velocity and Flow Rate .........................521 3 s' Q8 u! f* g# h
  D.2.1  MWF Flow Rate Needed for Reliable Chip Transportation.......522 4 x* q" x) `! d
  D.2.3  Example D.1...............................................................................527
6 Q  R0 e6 P, ~0 jD.3   Inlet MWF pressure...............................................................................528 4 S: F" l. d$ I7 `: w: i  g
D.4  Analysis of Hydraulic Resistances ........................................................532
# o1 |7 a4 v# r/ S  D.4.1  Analysis of Hydraulic Resistances Over Which the Designer  2 M* L( T# A  M8 Q
    Has No or Little Control ............................................................532
* ^4 h6 q& E) R0 U) y6 j5 U4 T/ h  D.4.2  Variable Resistances Over Which the Designer Has Control ....535 . x- H+ f, O! b9 N; C
D.5   Practical Implementation in the Drill Design ........................................539 6 d, R( M$ d; k( T: \! p
References ..........................................................................................................543
4 }2 u6 I' r# X0 ^Appendix E # {" X- V0 p; Y1 G; v
Requirements and Examples of Cutting Tool Drawings................................545 0 N$ F' h; n- t' j1 n. i% c
E.1   Introduction ...........................................................................................545
/ A* x. Y% O& Y5 hE.2   Tool Drawings – the Existent Practice ..................................................546 8 C% E) n! E$ i& Y1 n+ x+ _
E.3   Tool Drawing Requrements ..................................................................548
$ Y3 ]) W8 `8 o  r" ?+ _E.4   Examples of Tool Drawing ...................................................................553
  W6 O! G/ f: t2 u# C* R0 hReferences ..........................................................................................................559 . I( h2 o# |9 z+ c/ k# u, T- p
Index…………………………………………………………………………….561   M4 y) j+ @  n, _8 e

& I5 P7 A; J3 L* S
, F0 _' y) z+ i: S
发表于 2011-6-25 13:07:50 | 显示全部楼层
都是些神马?
发表于 2011-6-25 13:33:41 | 显示全部楼层
埋头挖矿中。。。。。。。。。
发表于 2011-6-26 15:14:56 | 显示全部楼层
好东西啊。。。只是,刀具不是我的工作。。。顶起,不沉。。。
 楼主| 发表于 2011-6-26 18:10:54 | 显示全部楼层
专业人士自有看法。
发表于 2011-6-27 18:42:38 | 显示全部楼层
好东西啊,英文的,看着太费劲了
发表于 2011-6-27 21:53:22 | 显示全部楼层
从网上查找这本书是Springer Series in Advanced Manufacturing丛书中的一本
" G6 b$ ^( V8 g: g( L6 U* `) l请问这套丛书共包含哪几本书
您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

Archiver|手机版|小黑屋|机械社区 ( 京ICP备10217105号-1,京ICP证050210号,浙公网安备33038202004372号 )

GMT+8, 2025-7-1 06:23 , Processed in 0.088368 second(s), 18 queries , Gzip On.

Powered by Discuz! X3.5 Licensed

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表