机械社区

 找回密码
 注册会员

QQ登录

只需一步,快速开始

搜索
查看: 8285|回复: 19

Geometry_of_Single_point_Turning_Tools_and_Drills

[复制链接]
发表于 2011-6-23 22:58:22 | 显示全部楼层 |阅读模式
本帖最后由 机器鼠 于 2011-6-23 23:18 编辑
4 g. e- r3 ~* }6 G% T* t4 v9 H" e- G( S1 s1 c) u% W0 R
Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Applications.pdf
. m, i% x. X9 D3 C- E. o有要的吗?刀具,细节,很到位。英文版。* [$ Z( M( K) y
国内无人这么细研究的吧?

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 阅读权限: 90, 下载次数: 8, 下载积分: 威望 -10 点

7

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 7, 下载积分: 威望 -10 点

6

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 8, 下载积分: 威望 -10 点

5

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

4

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

3

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

2

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

140.75 KB, 阅读权限: 90, 下载次数: 7, 下载积分: 威望 -10 点

1

回复

使用道具 举报

发表于 2011-6-24 19:17:16 | 显示全部楼层
说什么的?
回复 支持 反对

使用道具 举报

 楼主| 发表于 2011-6-24 22:02:25 | 显示全部楼层
Although almost any book and/or text on metal cutting, cutting tool design, and 4 L# J- Z) D' x, V
manufacturing process discusses to a certain extent the tool geometry, the body of 8 e- W; R7 g$ N* _. ~
knowledge on the subject is scattered and  confusing. Moreover, there is no clear 2 Y  n& Z- B# s5 ^' s* l
objective(s) set in the selection of the tool geometry parameters so that an answer
0 J6 @- Q4 ^" g3 h/ O3 U4 w' Oto a simple question about optimal tool geometry cannot be found in the literature
1 Y4 W0 N+ c4 ]: Aon the subject. This is because a criterion (criteria) of optimization is not clear, on ! i. @: |) Y( r: H& _2 O- U
one hand, and because the role of cutting tool geometry in machining process
! j* S; z; {: R2 e6 N1 C. ~optimization has never been studied systematically, on the other. As a result, many
& Q' B6 _/ g; j' Gpractical tool/process designers are forced to use extremely vague ranges of tool
, P3 w/ E5 W' a/ Q) G/ Q; Fgeometry parameters provided by handbooks. Being at least 20+ years outdated,
5 ^$ i- }3 \4 I; uthese data do not account for any particularities of a machining operation including
; A) O0 ^8 R) ^4 o! v" _  q1 Fa particular grade of tool material, the condition of the machine used, the cutting 5 H* K, T) [/ w. _' Z
fluid, properties and metallurgical condition of the work material, requirements to
9 i) ~, A6 L6 Z5 m+ rthe integrity of the machined surface, etc.
8 i; g. B, `) @* E0 JUnfortunately, while today's professionals, practitioners, and students are
3 |( n5 \5 W- C- Y9 i' Jinterested in cutting tool geometry, they are doomed to struggle with the confusing & {, f! D" A8 T2 |
terminology. When one does not know what the words (terms) mean, it is easy to
$ G, [0 g" Y1 U, f$ D! d: islip into thinking that the matter is difficult, when actually the ideas are simple, 0 i; {( I7 q% e; M1 f6 n
easy to grasp, and fun to consider. It is the terms that get in the way, that stand as a
4 P* n  \2 L9 w3 x/ Lwall between many practitioners and science. This books attempts to turn those
6 I# V" O. n: E1 Bwalls into windows, so that readers can peer in and join in the fun of proper tool
* L! X% I! C: v$ V4 [design.
3 w" r# B% [) K4 o! ^, L( VSo, why am I writing this book? There are a few reasons, but first and foremost,
! T) Q. p- {; z8 L! k4 xbecause I am a true believer in what we call technical literacy. I believe that
1 c% r/ B, D7 a) J) ~  [3 y7 Feveryone involved in the metal cutting business should understand the essence and % \* c3 w0 c4 R5 Z1 V
importance of cutting tool geometry. In my opinion, this understanding is key to
2 r! y8 B& ^1 r% I) H5 t) timproving efficiency of practically all machining operations. For the first time, this $ w) i* E+ J4 {- g
book presents and explains the direct correlations between tool geometry and tool
# \2 U  _1 G$ Y  Rperformance. The second reason is that I felt that there is no comprehensive book * h4 g! k5 u" z$ N0 t7 u
on the subject so professionals, practitioners, and students do not have a text from * b) C# e& M/ _# |
which to learn more on the subject and thus appreciate the real value of tool ! _+ K3 D$ M0 {: P) y: U/ k
geometry. Finally, I wanted to share the key elements of tool geometry that I felt ; S  y/ H9 |# F# o7 A5 y/ e6 |$ o# u, i
were not broadly understood and thus used in the tool design practice and in
' t2 x  H+ x, H$ L: L# Ooptimization of machining operations in industry. Moreover, being directly
$ a! m1 h% d4 T" g1 a' S* Ainvolved in the launch of many modern manufacturing facilities equipped with " i) M) ]9 H# g1 e
state-of-the-art high-precision machines, I found that the cutting tool industry is not
3 K7 v7 F& I2 s  rready to meet the challenge of modern metal cutting applications. One of the key
6 w7 e9 M7 s) i9 h6 V/ Iissues is the definite lack of understanding of the basics of tool geometry of 0 f( T( b( t% H
standard and application-specific tools.
7 K$ Q$ l/ {5 y  ^& z$ i1 [The lack of information on cutting tool geometry and its influence on the
3 S% p# L; k( T; C2 I$ u9 xoutcome of machining operations can be explained as follows. Many great findings + O; R' i5 H' X; f+ d. r
on tool geometry were published a long time ago when neither CNC grinding 9 \& N4 `+ r9 }2 y
machines capable of reproducing any kind of tool geometry were available nor ) {' R5 F. c7 w% b7 q% o
were computers to calculate parameters of such geometry (using numerical
) y' r9 N7 J6 R# q, g: n8 ]3 {methods) common. Manual grinding using standard 2- and 3-axis simple grinding 3 ^9 }) i9 \+ n, q# g- v
features was common so the major requirement for tool geometry was the simpler , |5 \! \- X( Q, I* L5 |
the better. Moreover, old, insufficiently rigid machines, aged tool holders and part
% y0 R. P- i- \4 R- @fixtures, and poor metal working fluid (MWF) selection and maintenance levered ; E' V1 e& X3 B1 K6 ~: |3 Z
any advancement in tool geometry as its influence could not be distinguished under - r! {$ t9 b3 W0 U9 _4 `* g
these conditions. Besides, a great scatter in the properties of tool materials in the & W! D. {9 Z, o* P+ U/ ]
past did not allow distinguishing of the true influence of tool geometry. As a result, : l# o/ F% @$ |* d5 x' L) Q: l2 H
studies on tool geometry were reduced to  theoretical considerations of features of 3 r3 W' a& a8 c5 Z8 a
twist drills and some gear manufacturing  tools such as hobs, shaving cutters,
$ C9 s: N& E, ~4 v+ U; Yshapers, etc.  
  n! j' W- v1 I1 a6 QGradually, once mighty chapters on tool geometry in metal cutting and tool 0 ^. n, s; X, n$ z  e
design books were reduced to sections of few pages where no correlation between ! Q& L0 b( P% D/ @+ ?
tool geometry and tool performance is normally considered. What is left is a " Q. ~! \# c7 J7 p7 R; u7 L
general perception that the so-called “positive geometry” is somehow better than
9 r2 V" n% f, w& L; T  i0 i# f“negative geometry.” As such, there is no quantitative translation of the word ) m! y3 s* D6 x+ ~( f- y. f2 ~
“better” into the language  of technical data although a great number of articles
/ _) y0 x2 ]9 |' n% B4 v" |written in many professional magazines discuss the qualitative advantages of
) G- N( g+ w. o+ a; D+ g. S8 H“positive geometry.” For example, one popular manufacturing magazine article ! E4 w  o  k$ M6 X0 O3 }) m. A
read “Negative rake tools have a much  stronger leading edge and tend to push ; a. R# G& D7 g( z( r3 a! g
against the workpiece in the direction of the cutter feed. This geometry is less free 4 |# e: Q: Q$ Y6 Z
cutting than positive rakes and so consumes more horsepower to cut.” Reading
: }+ ?! ^% \* mthese articles one may wonder why cutting tool manufacturers did not switch their
% c! l( l" A9 l) Z" ?4 F! Otool designs completely to this mysterious “positive geometry” or why some of / @6 M* \, u, P  O( X0 f
them still investigate and promote negative geometry. 1 O5 v) d1 t  t! q: i  t& C, T
During recent decades, the metalworking industry underwent several important
' j7 S2 C& Q) h! Echanges that should bring cutting tool geometry into the forefront of tool design $ O$ @: k$ [3 Y  X
and implementation:
回复 支持 反对

使用道具 举报

 楼主| 发表于 2011-6-24 22:03:42 | 显示全部楼层
1   What Does It Mean “Metal Cutting”? ...........................................................1
; Q' k0 [$ }4 F2 ~0 ?& ^7 U* u. z1.1   Introduction ...............................................................................................1
" g, C/ _3 d3 d; G1 Y, |, p1.2   Known Results and Comparison with Other Forming Processes ..............2 2 F# l- i2 Y' }+ |
  1.2.1   Single-shear Plane Model of Metal Cutting ...................................2
# _# P4 R+ O) Y0 F! }  1.2.2   Metal Cutting vs. Other Closely Related Manufacturing  " i9 A$ v4 n6 \+ R$ L, ]) f. f
Operations .................................................................................................5
0 {. L6 c8 p6 Y; Y% C8 Y; X1.3   What Went Wrong in the Representation of Metal Cutting?...................22 ! C: [( j7 t4 K
  1.3.1   Force Diagram..............................................................................23
+ S( W, F$ Q' t2 Y! Q* R/ z$ E! z  1.3.2   Resistance of the Work Material in Cutting.................................25
# F/ L. _( _  o3 J% ^5 q& l' B  1.3.3   Comparison of the Known Solutions for the Single-shear  7 h- m  T. e, c# ^* y5 Z! {
  Plane Model with Experimental Results .................................................27   H$ g8 r. b; y# P! N
1.4   What is Metal Cutting?............................................................................28
: T8 ~- S- Q7 Q9 Q& A3 t! p- }5 A  1.4.1   Importance to Know the Right Answer........................................28 ( I1 K! K: ~- A$ _
1.4.2  Definition .....................................................................................28 3 z2 W! h, n% Q8 r& o, T, w& b% [  k
  1.4.3   Relevance to the Cutting Tool Geometry.....................................29
1 m/ S: g* G- V8 \+ o$ g1.5   Fundamental Laws of Metal Cutting.......................................................32
5 L- F+ [. m: A; m% ]  1.5.1   Optimal Cutting Temperature – Makarow’s Law........................32
( H, K' ]9 ~( A0 ~2 K* |. L 1.5.2  Deformation Law.........................................................................35 6 E1 L0 V0 H) k0 ~
References........................................................................................................50
  }. n# l. p( e) F 2   Basic Definitions and Cutting Tool Geometry,  
) B* {, @& N* o8 `; xSingle Point Cutting Tools ............................................................................55
7 H3 U: L( k: |- f  N! b/ |" d2.1   Basic Terms and Definitions ...................................................................55 5 G  Y" ]( [8 j
2.1.1  Workpiece Surfaces.......................................................................57 ) e7 T* G- N* w
2.1.2  Tool Surfaces and Elements ..........................................................57
5 B0 W. v. k9 ~3 p& U 2.1.3  Tool and Workpiece Motions.......................................................57 4 w4 b3 l  P/ X  V# K5 M) q
2.1.4  Types of Cutting ............................................................................58 ; q/ x; A6 }  o; T9 y" `1 K- \0 a5 D
2.2   Cutting Tool Geometry Standards...........................................................60 / g. A4 s( V, P7 {
2.3   Systems of Consideration of Tool Geometry ..........................................61
  g' e  u# ^  }8 k& P2.4.  Tool-in-hand System (T-hand-S) .......................................................64
6 M- }" C) |- [9 N2 R  2.4.1   Tool-in-hand Coordinate System.................................................64
: [" W( a+ @2 j 2.4.2  References Planes ........................................................................66   C& b# S3 c6 w! _. T! ~: |
2.4.3  Tool Angles..................................................................................68
' C5 q. E3 t: A  2.4.4   Geometry of Cutting Tools with Indexable Inserts ......................74 $ l1 K1 V- b+ c- D( k7 l; V
2.5   Tool-in-machine System (T-mach-S)......................................................84 7 z% N* j7 F7 I! k6 g- O1 [5 H  v
2.5.1  Angles ..........................................................................................84
1 j' X# U7 Y) @' I/ ]; O/ C) V  2.5.2   Example 2.3 .................................................................................88   Z# H8 x1 Z% P* G
2.6   Tool-in-use System (T-use-S) .................................................................90 ! H0 H3 R+ g1 ?. _; q
2.6.1  Reference Planes ..........................................................................91
2 o' O7 q3 X4 o( ~! C% X+ _, h5 X 2.6.2  The Concept .................................................................................92 ! j. Z6 o. G( @0 q
  2.6.3   Modification of the T-hand-S Cool Geometry .............................92
  J: N, w- z* }- A4 R  2.6.4   Kinematic Angles.........................................................................98 ! K( J* F5 M( Y( U; z
  2.6.5   Example 2.4 ...............................................................................100 * h( O( w% ]: l# `2 [# [
2.7   Avalanched Representation of the Cutting Tool Geometry  
2 Q2 y! @; H# I/ P, d. t/ ~) Y/ { in T-hand-S............................................................................................102 , l9 v+ ]" @' f' `1 _7 f2 w0 \7 I' G
2.7.1  Basic Tool Geometry .................................................................102
% A4 z' D: Z1 r) t. [2.7.2   Determination of Cutting Tool Angles Relation ' M: C) \, N$ p( ]+ J3 e5 x' M
  for a Wiper Cutting Insert ..........................................................108
, x; L; \" ]. q; O+ k) Q  2.7.3   Determination of Cutting Tool Angles  
: B0 t6 G2 A/ B* E4 @( Q   for a Single-point Tool ...............................................................110
% B8 `  r5 R/ ~: `0 Z  2.7.4   Flank Angles of a Dovetail Forming Tool .................................117 " B; s5 S; o% G$ b2 G
  2.7.5   Summation of Several Motions..................................................119
0 H- |7 Q$ W/ B$ a, ^) q8 XReferences......................................................................................................125 1 T1 Q' Z$ X+ [# i( H& l0 A
3  Fundamentals of the Selection of Cutting Tool Geometry Parameters...127 9 _: J' X5 J( x' m% ~% f+ L" \
3.1   Introduction ...........................................................................................127 ) B: {9 r: O  U# E+ M8 e1 X8 \0 H
3.2   General Considerations in the Selection of Parameters  
/ S" B# I! F% X$ Z; J% M  of Cutting Tool Geometry .....................................................................129
$ ~' D, ^% a9 {2 r# {& L+ ] 3.2.1 Known Results .............................................................................129
4 D( ~6 n4 `8 k4 s( B/ k2 w  3.2.2 Ideal Tool Geometry and Constrains............................................130
* O" y6 S+ `5 Q  E  3.2.3 Practical Gage for Experimental Evaluation of Tool Geometry...132
; r. A4 m6 `7 j3 X3.3   Tool Cutting Edge Angles .....................................................................132
9 l! a6 E0 {, ?: d/ Y 3.3.1  General Consideration................................................................132 2 G) m$ ~3 N: P9 t+ N
  3.3.2   Uncut ChipT in Non-free Cutting ..............................................134
; i+ n" T  e: _0 q1 p, i( o  3.3.3   Influence on the Surface Finish..................................................142 * D) D# [/ w4 O# I( o
3.3.4  Tools with κr > 90°.....................................................................144
" c& G! [% Z) J* W- s  3.3.5   Tool Minor Cutting Edge Angle ................................................147 ! _% Q: M2 c6 p, z6 F/ d
3.4.  Edge Preparation ...................................................................................161
; A8 A+ ^9 l4 l6 E 3.4.1  General .......................................................................................161 1 f: {+ l$ O$ y' W0 G" F2 @9 g
  3.4.2   Shape and Extent........................................................................163 ( z: i& Y7 G" |# \
3.4.3  Limitations .................................................................................163
! `2 S" M" D+ d7 `* c  3.4.4   What Edge Preparation Actually Does.......................................169
& S2 l. O7 S* j4 w) a$ N! a6 t6 E3.5   Rake Angle............................................................................................171
# p6 u; U1 P" n4 ?( H) r: B. r2 X* M 3.5.1  Introduction................................................................................171 7 f! T" |  t3 n
  3.5.2   Influence on Plastic Deformation and Generazliations ..............175 # z6 v( e- H; C) L5 q
  3.5.3   Effective Rake Angle .................................................................183 " j' O; L+ V$ `7 [4 k; t1 k/ o
  3.5.4   Conditions for Using High Rake Angles....................................189 ' C& x: m' i  u/ [! V. f
3.6   Flank Angle ...........................................................................................191
0 P7 @' d5 l  Q" i3.7   Inclination Angle...................................................................................193 ( J, t2 H9 y  L
      3.7.1   Turning with Rotary Tools.........................................................195 " g0 b7 U6 h* G- a7 F- H
3.7.2  Helical Treading Taps and Broaches..........................................197
% g, s, v3 N: F  `! n/ x 3.7.3  Milling Tools..............................................................................198
) A9 {7 G$ @) U5 NReferences......................................................................................................201
: F% L' L# Y  Z4 |& ]+ r; E4   Straight Flute and Twist Drills ...................................................................205 " W$ e" p- |4 N" h
4.1   Introduction ...........................................................................................205   R3 J7 ^2 W- Q7 w
4.2   Classification.........................................................................................206 8 f2 H  D* @- k* a
4.3   Basic Terms...........................................................................................208 9 {+ I' R. j& p% x2 K
4.4   System Approach ..................................................................................211 ! z9 X5 @  f( B
4.4.1  System Objective .......................................................................212
& Y" Q! i! \% R% F; _+ ^# b 4.4.2  Understanding the Drilling System............................................212
0 I/ S2 f$ ]3 X: d  4.4.3.  Understanding the Tool..............................................................212 ) h1 f9 \" v: F  D9 C
4.5.  Force System Constrains on the Drill Penetration Rate ........................213
, x: h- }  n4 B0 n2 L: h  4.5.1   Force-balance Problem in Conventional Drills ..........................213
1 I+ T: R# B, `  4.5.2   Constrains on the Drill Penetration Rate....................................218
5 U& u9 d( e, G: V2 \/ } 4.5.3  Drilling Torque ..........................................................................219
, d5 T. y6 z( J  q 4.5.4  Axial Force.................................................................................220 " O' A; M* o* {% z
  4.5.5   Axial Force (Thrust)-torque Coupling .......................................221 2 V+ w( p; v9 g+ F7 O% H
4.6   Drill Point ..............................................................................................223 ' @3 m9 h' D" x0 H8 Z" B
4.6.1  Basic Classifications ..................................................................223 9 P& v0 ^2 X4 R# l9 }  |0 F( h' C
  4.6.2   Tool Geometry Measures to Increase the Allowable  
" d" A8 o7 R% P$ [! m- L: D Penetration Rate ....................................................................................224 3 \% v& q9 Q9 [; N8 C
4.7   Common Design and Manufacturing Flaws..........................................259
; p: j+ [! s" ^2 d  4.7.1   Web Eccentricity/ Lip Index Error.............................................260
# ?- t/ W! r  _& Y  |4 P* H* l. P& k  4.7.2   Poor Surface Finish and Improper Tool Material/Hardness.......261
* s! o+ P! T7 J# ]9 y 4.7.3  Coolant Hole Location and Size.................................................263
' p  R; [, H( c# ~5 p8 d3 Z4.8   Tool Geometry ......................................................................................267   C+ [" T" H5 Z3 ~6 A: n
  4.8.1   Straight-flute and Twist Drills Particularities............................269
* j& H6 ~, V% h3 s) v3 G  4.8.2   Geometry of the Typical Drill Point ..........................................270 - k/ f1 r, X( U/ }
  4.8.3   Rake Angle.................................................................................272
3 W" x5 o& l- d3 M  4.8.4  Inclination Angle .........................................................................280 0 |# _- ?" J; R6 Z" n3 ~/ M1 i' C
4.8.5  Flank Angle................................................................................281
4 N, y. V$ }3 m1 I- O; ?  4.8.6   Geometry of a Cutting Edge Located at an Angle  
7 u& U( N$ @6 C8 n2 @/ j   to the y0-plane ............................................................................292
& V4 b; G0 o- N( d3 e 4.8.7  Chisel Edge ................................................................................295
6 J) R3 Z) o- k! ]  4.8.8   Drill Flank is Formed by Two Planes: Generalization...............306
3 l" g9 l8 A& n  4.8.9   Drill Flank Angle Formed by Three Planes ...............................310 $ j& _! B) {7 L  w+ ?% e5 F" u
4.8.10  Flank Formed by Quadratic Surfaces.........................................313 4 Z  Q% z! F4 P# f
4.9   Load Over the Drill Cutting Edge .........................................................324
8 P+ y  J! R2 h* W/ j; s. z   4.9.1   Uncut Chip Thickness in Drilling ..............................................325 * R5 J0 I0 U+ I) n* W! I8 ^5 j
  4.9.2   Load Distribution Over the Cutting Edge ..................................327
4 N) x, L/ x& E+ r4.10  Drills with Curved and Segmented Cutting Edges ................................328 + T( \: h" G! T) K. s# X9 [
  4.10.1 Load of the Cutting Part of a Drill with Curved Cutting Edges .329 ( P: T' B; c5 }8 y! M/ c% g2 @
  4.10.2 Rake Angle.................................................................................332
2 g) z$ A8 P1 h* v3 P( A! |3 }References......................................................................................................337 9 i: g, J/ s6 w  h# R+ @
5   Deep-hole Tools............................................................................................341 : T! E/ H9 {9 {: T- Y$ z
5.1   Introduction ...........................................................................................341
5 L9 \4 k% l, p1 h$ D9 C5.2   Generic Classification of Deep-hole Machining Operations.................343
' S, o+ T8 W0 a* x7 X5.3   What Does ‘Self-piloting Tool’ Mean? .................................................345
4 r$ q  ]" ]1 X0 H! `* o  5.3.1   Force Balance in Self-piloting Tools..........................................345 ) {! u5 `1 l5 C$ p- _7 M
5.4   Three Basic Kinematic Schemes of Drilling .........................................350 - E! y7 z8 C5 k1 D8 g6 J
  5.4.1   Gundrill Rotates and the Workpiece is Stationary .....................351 2 @) W+ Z3 n& K/ \. W  I( f
5.4.2  Workpiece Rotates and the Gundrill is Stationary .....................352
9 {( M3 B9 t" \6 O 5.4.3  Counterrotation ..........................................................................352 ( i; x" ?8 ^' A, Z: G: i! o
5.5   System Approach ..................................................................................353
9 Q/ B1 q  j, @" `' Z& H2 ?  r  5.5.1   Handling Tool Failure ................................................................353
# I& h' H- q* ?) L 5.5.2  System Considerations ...............................................................354
; C( m0 a2 e5 j* S6 g# \0 @5.6   Gundrills................................................................................................362 " A& x! S; |( e' G
5.6.1  Basic Geometry..........................................................................362
, n8 f) l& J. t$ Q1 l, ~" y3 q 5.6.2  Rake Surface ..............................................................................365 , ?7 i; {* i: l$ K( G' b5 A) U# i! q
  5.6.3   Geometry of Major Flanks .........................................................370
" n! H  ?# e! Q# x& b$ T0 n# K 5.6.4  System Considerations in Gundrill Design ................................390 3 k5 X. T! m5 f
5.6.5   Examplification of Significance of the High MWF Pressure 7 [- e% s# F* K9 D. p
  in the Bottom Clearance Space ..................................................423 : d, D9 z5 X- D/ a
  5.6.6   Example of Experimental Study ................................................425
# B# q. J! R* Z2 U; Q$ k% d  a  5.6.7   Optimization of Tool Geometry.................................................439 % z' D' Y, H8 f/ l- o( O
References......................................................................................................440 ! N5 X4 c1 s1 h- v7 H* P  Q/ \- S9 J
Appendix A  9 k6 v2 g- O. [
Basic Kinematics of Turning and Drilling.......................................................443 ( \+ e) J7 m* z7 T7 p
A.1   Introduction ...........................................................................................443
7 _8 v# x; q4 ?9 W! v8 P# t: cA.2  Turning and Boring ...............................................................................444
' t4 W8 S8 r4 x7 q  A.2.1  Basic Motions in Turning...........................................................444 9 m6 O+ @5 S' D5 `
  A.2.2  Cutting Speed in Turning and Boring ........................................448   f5 C! M* x1 j5 w: J, u! Z- O5 E
  A.2.3  Feed and Feed Rate ....................................................................448 $ m7 @) a6 L; y& ]
  A.2.4  Depth of Cut...............................................................................449
0 O; Y: o' B( f( i6 |( _ A.2.5  Material Removal Rate ..............................................................449
2 ^6 Y, C( G9 p4 {: K( v A.2.6  Resultant Motion........................................................................450
/ |( t6 k" Q+ {( tA.3  Drilling and Reaming ............................................................................450 % R9 }2 I" L8 t
A.3.1  Basic Motions in Drilling...........................................................450 5 n; _, t8 J1 q2 y$ l& |- v1 ?
A.3.2  Machining Regime.....................................................................451
% F' \% [" \2 f. CA.4  Cutting Force and Power .......................................................................453
5 X; r$ _0 D) s2 H6 q. B3 N  A.4.1  Force System in Metal Cutting...................................................453 . Y3 G3 ]. T+ {1 I' V2 R
  A.4.2  Cutting Power ............................................................................454 ! i; n  {  |+ o; ?: H- V; y) |
A.4.3  Practical Assessment of the Cutting Force.................................455
: O/ r  o% d5 s- cReferences......................................................................................................461
0 E. u- {; i+ c* Y) I. iAppendix B  
) c( j3 U6 i0 U( N: H6 d# a  UANSI and ISO Turning Indexable Inserts and Holders.................................463 $ a$ b+ Z& [; o8 @1 w
B.1   Indexable Inserts ...................................................................................463 5 H( r  Q/ ~) p; _
  B.1.1  ANSI Code .................................................................................464 7 d7 v, E) c2 R& d
B.1.2  ISO Code....................................................................................471
# h' k: U- o3 W7 h+ o9 }  B.2 Tool Holders for Indexable Inserts (Single Point Tools) ......................491
! x6 S7 @3 ^8 |  B.2.1   Symbol for the Method of Holding Horizontally Mounted  % V1 \& s( a. n( }/ T+ z
Insert – Reference Position (1) ..............................................................492
$ V" V$ m" m( P1 I8 |/ T. L# v  B.2.2   Symbol for Insert Shape – Reference Position (2) .....................493 ' D9 h" u+ o  U( g
  B.2.3   Symbol for Tool Style – Reference Position (3) ........................493 " U1 V# m( w: \& U' f3 ]/ \, G" s( Q
  B.2.4   Letter Symbol Identifying Insert Normal Clearance –  
% F5 O, p$ u4 E# n- ?8 u   Reference Position (4)................................................................494 ! X8 R2 t) p4 o9 p. Q: |5 N
  B.2.5   Symbol for Tool Hand – Reference position (5) ........................494
" x# E, u0 y1 j( i; p* J  B.2.6  Symbol for Tool Height (Shank Height of Tool Holders  $ b1 D" ]: \5 t; n/ n( r+ V% h: l
    and Height of Cutting Edge) - Reference Position (6) ...............494
2 a6 z5 z9 A0 d3 p7 [  B.2.7  Number Symbol Identifying Tool Holder Shank Width –  
7 q. E, x( {0 o% E8 e8 [8 t4 O   Reference Position (7)................................................................495
( w7 o0 K0 q4 M2 H1 `$ }  B.2.8  Number Symbol Identifying Tool Length –  
1 G# f4 h" [! X: j   Reference Position (8)................................................................495
) |: W: m; N- W; Z, [  B.2.9   Letter Symbol Identifying Indexable Insert Size –  
) D3 r: S7 Z) T, ?" n   Reference Position (9)................................................................497 . h0 ], ?0 Y  B- z# M
Appendix C  0 h8 P* g; v# c- p* E4 A. e7 [
Basics of Vector Analysis ..................................................................................499
  b# `3 L" e  Q% SC.1   Vectors and Scalars ...............................................................................499
$ ]  P4 l( a  }1 }, UC.2   Definition and Representation...............................................................500
$ R0 A* ~1 E/ t+ c2 i C.2.1  Definitions..................................................................................500
4 P" s+ r9 u* U5 Z% Z- P C.2.2  Basic Vector Operations ............................................................503
7 {0 M$ Z7 c9 VC.3   Application Conveniences.....................................................................509
6 K4 a! k0 T& xC.4  Rotation: Linear and Angular Velocities...............................................511
3 h9 w8 L1 e: s2 b$ Q# e  C.4.1   Planar Linear and Angular Velocities ........................................511
+ G" z. L3 E+ P7 O8 j  C.4.2   Rotation: The Angular Velocity Vector .....................................515 + U/ F! h3 \# {: f, m3 |  K6 ~; E
References ...........................................................................................................518 : O+ Y7 N+ e" g! r
Appendix D  
& w9 @2 @/ U4 y  e& @+ U- L+ d% s# eHydraulic Losses: Basics and Gundrill Specifics............................................519
* k/ w* O5 R$ w* [D.1  Hydraulic Pressure Losses – General ....................................................519
! H2 T2 X. @. h- c% V$ q D.1.1  Major Losses: Friction Factor ....................................................520 % Y- ~  v) e3 ^. r, o
  D.1.2  Minor Losses (Losses Due to Form Resistance) ........................521
( z% E* W& ?4 u! a; P% K2 K D.2  Concept of the Critical MWF Velocity and Flow Rate .........................521 ! Y( ^9 F; t3 w! u& h& ~
  D.2.1  MWF Flow Rate Needed for Reliable Chip Transportation.......522 * {% N6 p3 T9 m9 @. |4 @1 {2 \, V
  D.2.3  Example D.1...............................................................................527 1 E8 E" I6 {/ V5 J6 N- o3 o
D.3   Inlet MWF pressure...............................................................................528 " {6 |* y; `, k. T6 _: `7 M9 ^2 U% f
D.4  Analysis of Hydraulic Resistances ........................................................532 % ?8 A, Y2 c2 n7 O; }$ t- S
  D.4.1  Analysis of Hydraulic Resistances Over Which the Designer  
" r) o8 x: x& c+ S* Q( b    Has No or Little Control ............................................................532 4 J+ @5 E. R3 n& C! ?. _! t- S% J$ l
  D.4.2  Variable Resistances Over Which the Designer Has Control ....535
8 k: k. g* e% P( q/ C) r% W" bD.5   Practical Implementation in the Drill Design ........................................539
4 E) C" `/ a, e% k) ?5 QReferences ..........................................................................................................543
/ x$ z; n+ B5 W4 U7 kAppendix E
# e- n. P4 i3 ~2 sRequirements and Examples of Cutting Tool Drawings................................545
( |1 S  w+ @! F! \1 a) cE.1   Introduction ...........................................................................................545
" l# I& |1 e6 D+ ]E.2   Tool Drawings – the Existent Practice ..................................................546
6 H( h( J$ A* c; {. ^0 EE.3   Tool Drawing Requrements ..................................................................548 : I$ _8 {+ }* v9 y* p
E.4   Examples of Tool Drawing ...................................................................553
# }: ?7 r+ e: u! o" HReferences ..........................................................................................................559 ; u- R0 \* U$ r
Index…………………………………………………………………………….561
3 {+ Y4 W% {- Z+ D: V  V/ ^
' ?. W+ _$ k% O1 s
; p1 G6 m2 `2 G+ |6 L, A
回复 支持 反对

使用道具 举报

发表于 2011-6-25 13:07:50 | 显示全部楼层
都是些神马?
回复 支持 反对

使用道具 举报

发表于 2011-6-25 13:33:41 | 显示全部楼层
埋头挖矿中。。。。。。。。。
回复 支持 反对

使用道具 举报

发表于 2011-6-26 15:14:56 | 显示全部楼层
好东西啊。。。只是,刀具不是我的工作。。。顶起,不沉。。。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2011-6-26 18:10:54 | 显示全部楼层
专业人士自有看法。
回复 支持 反对

使用道具 举报

发表于 2011-6-27 18:42:38 | 显示全部楼层
好东西啊,英文的,看着太费劲了
回复 支持 反对

使用道具 举报

发表于 2011-6-27 21:53:22 | 显示全部楼层
从网上查找这本书是Springer Series in Advanced Manufacturing丛书中的一本
; J8 k* P! X/ w* |7 [1 Q) c请问这套丛书共包含哪几本书
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

小黑屋|手机版|Archiver|机械社区 ( 京ICP备10217105号-1,京ICP证050210号,浙公网安备33038202004372号 )

GMT+8, 2025-3-9 10:21 , Processed in 0.078353 second(s), 18 queries , Gzip On.

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表