. Y+ S8 S0 v2 R4 y: o) F8 t 10多年前曾经也为理解PID算法,苦恼不已。今天看到这篇文章,一下子好像回到10多年前,为理解PID控制算法,天天跑书店的情景。& Z' G+ d7 V& t3 \! L& b' e: e
转给社区里正在学习PID控制算法的社友。
1 h8 i8 z" S& r! J' P5 E" j0 I* _% H5 h* q- ]$ ?7 \
- z1 d: X, Y8 Y- W+ d9 K5 \3 ? PID控制应该算是应用非常广泛的控制算法了。小到控制一个元件的温度,大到控制无人机的飞行姿态和飞行速度等等,都可以使用PID控制。这里我们从原理上来理解PID控制。
$ R% i$ e, c' H% K% a , R' O2 y+ ?( m8 A8 `4 C
PID(proportion integration differentiation)其实就是指比例,积分,微分控制。先把图片和公式摆出来,看不懂没关系。(一开始看这个算法,公式能看懂,具体怎么用怎么写代码也知道,但是就是不知道原理,不知道为什么要用比例,微分,积分这3个项才能实现最好的控制,用其中两个为什么不行,用了3个项能好在哪里,每一个项各有什么作用)
- q3 ]% X7 h& g' [: t
* T8 C8 n" j r# S9 w. z0 j
$ l3 f F8 ~' q: x0 f- @ 总的来说,当得到系统的输出后,将输出经过比例,积分,微分3种运算方式,叠加到输入中,从而控制系统的行为,下面用一个简单的实例来说明。
; q- Z" ]% f/ h" ~4 f" ~比例控制算法 我们先说PID中最简单的比例控制,抛开其他两个不谈。还是用一个经典的例子吧。假设我有一个水缸,最终的控制目的是要保证水缸里的水位永远的维持在1米的高度。假设初始时刻,水缸里的水位是0.2米,那么当前时刻的水位和目标水位之间是存在一个误差的error,且error为0.8.这个时候,假设旁边站着一个人,这个人通过往缸里加水的方式来控制水位。如果单纯的用比例控制算法,就是指加入的水量u和误差error是成正比的。 : m8 j( s5 R1 B* G$ r
即:u=kp*error
, U- f! L1 Q0 g5 _
, l1 Y# M# S. H2 N5 r 假设kp取0.5, 那么t=1时(表示第1次加水,也就是第一次对系统施加控制),那么u=0.5*0.8=0.4,所以这一次加入的水量会使水位在0.2的基础上上升0.4,达到0.6.。
3 C4 L0 b; L& T7 p+ ^: ? 接着,t=2时刻(第2次施加控制),当前水位是0.6,所以error是0.4。u=0.5*0.4=0.2,会使水位再次上升0.2,达到0.8。
! f$ ~9 [" x* ~- T' c' C( |
如此这么循环下去,就是比例控制算法的运行方法。 可以看到,最终水位会达到我们需要的1米。 7 `+ a" w$ v+ V- X+ l
但是,单单的比例控制存在着一些不足,其中一点就是 –稳态误差!(我也是看了很多,并且想了好久才想通什么是稳态误差以及为什么有稳态误差)。
! |; c* Y( f" y) r' O 像上述的例子,根据kp取值不同,系统最后都会达到1米,只不过kp大了到达的快,kp小了到达的慢一些。不会有稳态误差。但是,考虑另外一种情况,假设这个水缸在加水的过程中,存在漏水的情况,假设每次加水的过程,都会漏掉0.1米高度的水。 0 n U* b9 @3 `6 y7 u0 g
仍然假设kp取0.5,那么会存在着某种情况,假设经过几次加水,水缸中的水位到0.8时,水位将不会再变换!!!因为,水位为0.8,则误差error=0.2。所以每次往水缸中加水的量为u=0.5*0.2=0.1.同时,每次加水,缸里又会流出去0.1米的水!!!加入的水和流出的水相抵消,水位将不再变化!!
- d4 R. F1 f" f# l4 p 也就是说,我的目标是1米,但是最后系统达到0.8米的水位就不再变化了,且系统已经达到稳定。由此产生的误差就是稳态误差了。 8 X, z2 n3 f$ a! b+ k! A) n
(在实际情况中,这种类似水缸漏水的情况往往更加常见,比如控制汽车运动,摩擦阻力就相当于是“漏水”,控制机械臂、无人机的飞行,各类阻力和消耗都可以理解为本例中的“漏水”)
) \; }4 {* x' l2 g/ ] 所以,单独的比例控制,在很多时候并不能满足要求。
% p- @: D# U6 l, P% b; m( a+ s3 `
积分控制算还是用上面的例子,如果仅仅用比例,可以发现存在暂态误差,最后的水位就卡在0.8了。于是,在控制中,我们再引入一个分量,该分量和误差的积分是正比关系。所以,比例+积分控制算法为: 7 v3 `& V; ?2 \* c! l7 Y
u=kp*error+ ki∗∫ error
, d6 A7 U" l8 j! g: Y/ l6 e1 j2 C' a还是用上面的例子来说明,第一次的误差error是0.8,第二次的误差是0.4,至此,误差的积分(离散情况下积分其实就是做累加),∫error=0.8+0.4=1.2. 这个时候的控制量,除了比例的那一部分,还有一部分就是一个系数ki乘以这个积分项。由于这个积分项会将前面若干次的误差进行累计,所以可以很好的消除稳态误差(假设在仅有比例项的情况下,系统卡在稳态误差了,即上例中的0.8,由于加入了积分项的存在,会让输入增大,从而使得水缸的水位可以大于0.8,渐渐到达目标的1.0.)这就是积分项的作用。 ( q* m, m& j/ H5 b( u
微分控制算法换一个另外的例子,考虑刹车情况。平稳的驾驶车辆,当发现前面有红灯时,为了使得行车平稳,基本上提前几十米就放松油门并踩刹车了。当车辆离停车线非常近的时候,则使劲踩刹车,使车辆停下来。整个过程可以看做一个加入微分的控制策略。 8 x+ ~* m$ [; F! `( H$ l8 b8 c
微分,说白了在离散情况下,就是error的差值,就是t时刻和t-1时刻error的差,即u=kd*(error(t)-error(t-1)),其中的kd是一个系数项。可以看到,在刹车过程中,因为error是越来越小的,所以这个微分控制项一定是负数,在控制中加入一个负数项,他存在的作用就是为了防止汽车由于刹车不及时而闯过了线。从常识上可以理解,越是靠近停车线,越是应该注意踩刹车,不能让车过线,所以这个微分项的作用,就可以理解为刹车,当车离停车线很近并且车速还很快时,这个微分项的绝对值(实际上是一个负数)就会很大,从而表示应该用力踩刹车才能让车停下来。
# _6 Y1 F7 Y, Z% |' ]切换到上面给水缸加水的例子,就是当发现水缸里的水快要接近1的时候,加入微分项,可以防止给水缸里的水加到超过1米的高度,说白了就是减少控制过程中的震荡。 ) z5 H4 f" n [9 y2 J
现在再回头看这个公式,就很清楚了 / N$ | j. i# N9 K/ D
3 {) N7 a( X1 ~ c; ]/ N% e
括号内第一项是比例项,第二项是积分项,第三项是微分项,前面仅仅是一个系数。很多情况下,仅仅需要在离散的时候使用,则控制可以化为
8 `' @# Z p# |' Z( T6 k
( Y# X5 S5 j& [! i7 h
& x2 M8 e$ i7 k7 Z& X1 u
每一项前面都有系数,这些系数都是需要实验中去尝试然后确定的,为了方便起见,将这些系数进行统一一下:
这样看就清晰很多了,且比例,微分,积分每个项前面都有一个系数,且离散化的公式,很适合编程实现。 6 K, V Z. ]0 \0 a2 l
讲到这里,PID的原理和方法就说完了,剩下的就是实践了。在真正的工程实践中,最难的是如果确定三个项的系数,这就需要大量的实验以及经验来决定了。通过不断的尝试和正确的思考,就能选取合适的系数,实现优良的控制器。
: I( I" b) W# T6 e) B! ?+ C, I0 ^ x
|