首先说,我就是个初级水平的行子,多数情况下,体会多余经验。所以,不足之处也还希望诸位多多包涵和指教。9 D/ d/ I2 Q' [6 a/ Q' {1 w3 H$ w
回正文。
. Q/ ]4 _! ^4 [# a, m
, {( k7 i/ \+ K6 [2 ~ 前些日子提到了测量,也看到了有些朋友关于数学和数模的困惑。结合这些年来的一些感触,借这个平台跟大家分享下,讨论下。! K; t+ z* O/ a( }' T* ~7 [
首先说测量。- j% u" h: a- H4 Z- j, u
0 M* I5 S5 C2 h- S! _
扫大在之前的帖子里曾经这么问过我“测量有两种。一种是科班出身,各种仪器设备俱全。一种是作坊式,一把游卡量天下。楼主属于哪种。”呵呵。这个问题其实挺尖锐的。我想,在坐的诸位可能也有人有这样的想法或者疑惑吧。( h+ K \/ q) N" b/ U
; \: O& \7 K. \7 T* V
挺让大家失望的,我可算不上什么科班出身,设备俱全;也不能说是作坊式,因为我不靠游卡走天下。在我的观念里,对测量的理解是有所不同的。相对于设备是否齐全和理论基础是否扎实,我更倾向于测量的目的分类。当然,这不是说扫大的提问有问题,只是每个人的理解和定位不同而已。如果按照目的性质来分类,测量大抵上可以分为“还原类测量(真实测量)”和“理论测量”。
7 G W4 N$ \8 B3 L& m* T& S
5 e$ O) ]! Q( v- h4 H 还原类测量或者真实测量,是一种近最大程度真实反应实际参数或者真实再现设计参数的测量。比较典型的例子就是地理测量和施工测量。如同定义所说,这种类型的测量更多的要求是其准确性,而为了达到这种目的,选择适当的测量工具和正确使用这类工具就成为一种基础,而经验则是在这种基础上的更高级应用。这种类型的测量不紧包括测量本身,也包括相关的计算,如土方计算,地层描述等。这里面对于工具操作、数据读取统计、计算和描绘的理论与知识很多,也很深,对经验的考察也很重。比如搞地质测量的,就需要从一堆的信号图谱中读出不同的地层分布,分布面积、厚度等并根据这些计算相关资源的储量和可开采度。而这些,没有扎实的基础和若干年的积累是做不到的。还原类测量在机械行业中的应用,其针对性更强。例如实体分析、零件还原、数据对比等。典型的例子例如零件还原(比如高级曲面类零件的形状还原),比如材料力学试验,比如整体刚度试验与分析等。% V2 p% e. X0 j' b
1 M2 }+ v8 a, w8 R& J, r 理论测量,是一种基于理论计算、数据筛选、标准对照、二次开发或者再设计等基础之上的模糊数据统计法。这种测量方法的目的往往不是追求被测量物体的实际参数本身。我们通常所说的“山寨”其实属于这个范畴,但只是这种方法的部分应用,即理论测量的纯数据模糊拟合,其追求的是数据上的拟合度,而不是理论上的拟合度。举个例子说,比如一个简单的轴承滚子,山寨的做法是从数据上贴合这个被测量滚子的数据,也就是我们说的“形似”。按照现在科技的发展来看,这种贴合度甚至可以做到99%(因为3D扫描技术的出现和发展),但是其相应的问题就是,当被测物体的型号更换的时候,“山寨”所能做的就是再重新测量一遍。因为只是去贴合数据,你很难知道这个数据是如何来的,为什么要这样。而这也就是“山寨”到最后越玩越死的原因。而理论测量不只有这样。
# o# j1 w- ? z P+ I
+ I- e+ q2 X$ C8 G% @理论测量更注重的是理论基础上的数据贴合,即通过数据的贴合对现有理论及相应学科知识进行对比,再通过现有理论、数学模型等进行重新计算,将其结果通过统计的方法与实际测量的数据进行模糊对比,并以此为基础确定其计算基础和方法的正确性。举个简单的例子,比如说某种类型的万向节结构中有一段弧面,为了确定这段弧面,你测量的其相关的数据。而在这之后,理论测量要做的,不是把这些数据作立刻的拟合,而是将相关的环境数据收集在一起,重新建立起相关的实体模型和数学模型。这个模型可能是一种近似的,不准确的模型,但是通过这个模型的分析和计算,你能在原理上得到一个或几个和原实体设计原理近似的方案,然后通过这些方案再次计算结果,将各个结果同测量数据进行模糊对比,根据相似程度确定原实体的理论模型。并通过再次的对比分析,判断是否继续沿用这种原实体模型还是采用新模型,并将其存档。这种过程的测量方法比起直接数据拟合来,要困难许多,也慢许多,但是对于后期的研究、分析、实验、开发等有极大的好处。/ k$ G( N' E# b" B+ p& ~
, W L' [" j! _2 R- o 必须要说,“还原类测量和理论测量虽然相互独立,但并不冲突,在需要的场合中,往往二者是同时应用的。”
/ @7 G. g* S* f* Z* H 多说一句,我也就勉强算是个后一类的初学者,第一类更谈不上,所学有限。呵呵。
) J0 _; r5 G2 v# ]& ~$ R& R8 P: C! ^* d; I# d6 Y
其实,我们的生活中充满了后一种的测量方法。不是说山寨啊。比如说,你买了个门回来自己安装。没有人会傻乎乎的把门的尺寸精确到几道上,然后表标准准的在门框上画上线,保证精度的钻孔,上合叶装门。因为,没有这个必要,你的理论基础从一开始就判断出不需要做到这种程度,只要把门在门框上对好,不打架、不斜,不蹭就可以了。而其实,在这个过程中,你经历就是一个目测模糊数据,理论建模分析,结果对比拟合,决策的过程。说白了,其实大家都会用。所不同的是,当你的理论基础不够的时候,你很难做到这点。
8 ~) G8 K4 `- q3 ^, w/ M9 ^
* B, \ A u, G7 ?7 ~ 数学。说起来,这个话题更大了。有人感觉数学很难,而且看不到有什么用处。感觉很迷茫。其实,数学就在我们身边,同机械息息相关。$ o5 h' L! q! o5 {$ Z- I9 c
3 Q$ @* r# L5 o5 i, L: R N; l
让我们再回头看看上面说过的一些内容,其实你不难发现,在通篇的测量阐述里,我都没有离开数学的范畴。而在机械设计中,无论是机构原理设计,还是强度设计、寿命设计、加工设计等等,你都离不开数学。不同的是,有些地方可能因为经验的积累,高手们往往能迅速得出一个结论来,这使得很多新人感觉这里没有数学的事儿了,有经验就行。其实不是这样。举个例子可能更好说明一些。比如下面这个图。! T! M) r! U& T; ]; n, W
: r, d R8 G- K5 h8 b 7 y3 m2 K+ p. J4 j& h: r. n
Z; D! W) V2 E9 k! w% S" _ 这是某种万向节的头部结构。请注意滚动体下面壳体上的圆弧。那么从这个图中你怎么去判断这个万向节的运动方式。那两段圆弧又是什么样的?圆弧倒角吗?还是另有玄机。- S5 b' {( e8 R* ]4 L5 ^4 ?* n
0 n1 U2 ]- |8 B! d+ x 解决这个问题,你需要用到数学。先是原理分析,然后是运动分析,然后就是在这个基础上的数学模型建立(一会儿再简单说说数模)。当建立起数学模型之后,你就可以计算出这两段圆弧的轨迹曲线,并以此进行判断。当然这个过程不一定是唯一的,你可能需要对比筛选。
# I S9 Q0 s1 I/ d' ?
& Z% B$ C! Z6 Y/ L8 K' ~. W 有些人认为,画图是不是就没有数学了。比如说我就是个画图的,计算什么都可以不用我弄,我只要按尺寸画出来就行。这里是不是就没有数学了呢?一样的不是。数学无处不在。比如说,你是用sw画图的,当你遇到特殊曲线的时候你怎么办?比如说渐开线、摆线、环状螺旋线等等。不去建立数学模型,不去推导,那你剩下的方法只有求助于别人。你敢说你这算能画图吗?
' {, n' k+ l5 K2 V7 \ A
2 y3 Q9 v% i( r- {( y/ d9 W3 J7 G( J/ A2 c
有人说,总说“数模”“数模”的,听着好高深,好遥远。其实,只是你把他想得太困难而止步于此了。比如说,有这么一个数模,某曲线的曲线方程是: x=r*cost; y=r*sint;那么当这条曲线沿X轴正向平移距离a后的曲线方程是什么?
* p2 N, {) a% k( n3 y6 w" E 0 X* \; ?! {. I m
你很快就能答出: x=a+r*cost; y=r*sint。你看这不是很简单吗?这就是数模。不过是一种简单的数模。那些复杂的数模往往也是通过这些简单的数模组合而成的。1 S5 a! r' |9 Q- ^2 _2 n G2 ~
0 G* c! V" i6 X. m+ L1 ^
* @' z7 H4 ]- B# N
就说这么多吧。大家共同讨论,共同体会,共同分享,共同提高。) r' G- Y! {5 X
0 a) h& b+ V& U |