为什么MATLAB中cos(pi/2)不等于0,而是以分数的形式表示,怎么能让这些值很小的分数变为0呢?7 O0 a$ ] Z1 O. `
说明:我在做一个计算时,最后出现的结果是下面这样的,但是其中的那些分数本来应该是零的. T$ e6 n3 N, E2 ^3 k
T40 = i5 w6 n9 i1 O" s" i1 j
& Y* G8 q6 J: J9 X
[ (4967757600021511*cos(s1)^2)/81129638414606681695789005144064 - (4967757600021511*cos(s1)*sin(s1))/81129638414606681695789005144064 - (4967757600021511*3^(1/2)*sin(s1)^2)/243388915243820045087367015432192 + (2^(1/2)*3^(1/2)*sin(s1))/3 - (4967757600021511*3^(1/2)*cos(s1)*sin(s1))/243388915243820045087367015432192, (3^(1/2)*sin(s1)^2)/3 - (24678615572571482867467662723121*cos(s1)*sin(s1))/6582018229284824168619876730229402019930943462534319453394436096 - cos(s1)^2 + (4967757600021511*2^(1/2)*3^(1/2)*sin(s1))/243388915243820045087367015432192 - (24678615572571482867467662723121*3^(1/2)*cos(s1)*sin(s1))/19746054687854472505859630190688206059792830387602958360183308288, cos(s1)*sin(s1) + (4967757600021511*2^(1/2)*3^(1/2)*sin(s1))/243388915243820045087367015432192 + (3^(1/2)*cos(s1)*sin(s1))/3, a1*cos(s1) - a3*((3^(1/2)*sin(s1)^2)/3 - cos(s1)^2) + d4*(cos(s1)*sin(s1) + (3^(1/2)*cos(s1)*sin(s1))/3) + (2^(1/2)*3^(1/2)*d3*sin(s1))/3 + (4967757600021511*2^(1/2)*3^(1/2)*d4*sin(s1))/243388915243820045087367015432192]$ b9 G9 ?/ k I, C2 i- }
[ (4967757600021511*cos(s1)*sin(s1))/81129638414606681695789005144064 - (4967757600021511*sin(s1)^2)/81129638414606681695789005144064 + (4967757600021511*3^(1/2)*cos(s1)^2)/243388915243820045087367015432192 + (4967757600021511*3^(1/2)*cos(s1)*sin(s1))/243388915243820045087367015432192 - (2^(1/2)*3^(1/2)*cos(s1))/3, (24678615572571482867467662723121*3^(1/2)*cos(s1)^2)/19746054687854472505859630190688206059792830387602958360183308288 - (24678615572571482867467662723121*sin(s1)^2)/6582018229284824168619876730229402019930943462534319453394436096 - cos(s1)*sin(s1) - (3^(1/2)*cos(s1)*sin(s1))/3 - (4967757600021511*2^(1/2)*3^(1/2)*cos(s1))/243388915243820045087367015432192, - (3^(1/2)*cos(s1)^2)/3 - (4967757600021511*2^(1/2)*3^(1/2)*cos(s1))/243388915243820045087367015432192 + sin(s1)^2, d4*(sin(s1)^2 - (3^(1/2)*cos(s1)^2)/3) + a1*sin(s1) + a3*(cos(s1)*sin(s1) + (3^(1/2)*cos(s1)*sin(s1))/3) - (2^(1/2)*3^(1/2)*d3*cos(s1))/3 - (4967757600021511*2^(1/2)*3^(1/2)*d4*cos(s1))/243388915243820045087367015432192]
0 h' t, H5 [2 p[ 3^(1/2)/3 + (4967757600021511*2^(1/2)*3^(1/2)*sin(s1))/243388915243820045087367015432192 + (4967757600021511*2^(1/2)*3^(1/2)*cos(s1))/243388915243820045087367015432192, (4967757600021511*3^(1/2))/243388915243820045087367015432192 - (2^(1/2)*3^(1/2)*sin(s1))/3 + (24678615572571482867467662723121*2^(1/2)*3^(1/2)*cos(s1))/19746054687854472505859630190688206059792830387602958360183308288, (4967757600021511*3^(1/2))/243388915243820045087367015432192 - (2^(1/2)*3^(1/2)*cos(s1))/3, (3^(1/2)*d3)/3 + (4967757600021511*3^(1/2)*d4)/243388915243820045087367015432192 - (2^(1/2)*3^(1/2)*d4*cos(s1))/3 + (2^(1/2)*3^(1/2)*a3*sin(s1))/3]
; U& \6 a: c2 i: @ a[ 0, 0, 0, 1]1 K( t' P& N0 a$ M' Q, H
|