机械社区

 找回密码
 注册会员

QQ登录

只需一步,快速开始

搜索
查看: 8039|回复: 19

Geometry_of_Single_point_Turning_Tools_and_Drills

[复制链接]
发表于 2011-6-23 22:58:22 | 显示全部楼层 |阅读模式
本帖最后由 机器鼠 于 2011-6-23 23:18 编辑 , @# E; [9 R9 ^3 C

% a3 Q2 j7 f8 t/ j4 @/ T( I1 Y* p0 ]Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Applications.pdf! S* E: s$ {! J  l
有要的吗?刀具,细节,很到位。英文版。/ p  r, ^  ^! q3 R" l3 m0 j
国内无人这么细研究的吧?

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 阅读权限: 90, 下载次数: 8, 下载积分: 威望 -10 点

7

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 7, 下载积分: 威望 -10 点

6

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 8, 下载积分: 威望 -10 点

5

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

4

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

3

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

2

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

140.75 KB, 阅读权限: 90, 下载次数: 7, 下载积分: 威望 -10 点

1

回复

使用道具 举报

发表于 2011-6-24 19:17:16 | 显示全部楼层
说什么的?
回复 支持 反对

使用道具 举报

 楼主| 发表于 2011-6-24 22:02:25 | 显示全部楼层
Although almost any book and/or text on metal cutting, cutting tool design, and 8 r- I4 d& \5 X8 {
manufacturing process discusses to a certain extent the tool geometry, the body of ' k2 \# ]& [% K
knowledge on the subject is scattered and  confusing. Moreover, there is no clear * ]& R7 y5 ~" }1 B& ]7 l
objective(s) set in the selection of the tool geometry parameters so that an answer ' J9 i& Y% c6 I3 p; K/ z1 ?& p' S
to a simple question about optimal tool geometry cannot be found in the literature ( x3 q; m/ C1 Q$ g( F7 F' K- V5 Y
on the subject. This is because a criterion (criteria) of optimization is not clear, on ) u6 @# M) o* `" ]
one hand, and because the role of cutting tool geometry in machining process # k/ P; r1 P1 v5 _( r, b( }
optimization has never been studied systematically, on the other. As a result, many
% I* h9 J& H) O( ~5 b& Gpractical tool/process designers are forced to use extremely vague ranges of tool
9 |5 T6 y; q5 T" ygeometry parameters provided by handbooks. Being at least 20+ years outdated, ' Q! E; h0 U4 n5 z
these data do not account for any particularities of a machining operation including
8 Y* x- {& r, Sa particular grade of tool material, the condition of the machine used, the cutting / k) f5 N5 V- G2 W7 w6 `4 o1 u1 ^
fluid, properties and metallurgical condition of the work material, requirements to 5 L6 A0 Y% y, t5 u( a1 v% V
the integrity of the machined surface, etc.
7 u9 r& F  w3 w! X/ k$ {, SUnfortunately, while today's professionals, practitioners, and students are
. d  ^* ]/ J7 l! Q) yinterested in cutting tool geometry, they are doomed to struggle with the confusing 4 p. C: y8 F6 a! Q: P
terminology. When one does not know what the words (terms) mean, it is easy to
, q- W! b, F: O6 \5 D8 b! `/ Z) c4 tslip into thinking that the matter is difficult, when actually the ideas are simple,
+ T* h* d- p4 Ceasy to grasp, and fun to consider. It is the terms that get in the way, that stand as a ) ]4 i( }4 k- q
wall between many practitioners and science. This books attempts to turn those
2 K$ H: P) J  G+ Pwalls into windows, so that readers can peer in and join in the fun of proper tool
  W8 o' r/ R& d# T; Ydesign. ) T7 b/ L' b1 ^
So, why am I writing this book? There are a few reasons, but first and foremost,
* E% F) A- B4 ]# j. @% v8 ^  xbecause I am a true believer in what we call technical literacy. I believe that ) P0 }2 T! [, Z, b9 n# v: Y' `0 h
everyone involved in the metal cutting business should understand the essence and
( F2 Z  Y- j4 q  T( Pimportance of cutting tool geometry. In my opinion, this understanding is key to ! V8 I' s9 u& x" [) U9 O. _( \
improving efficiency of practically all machining operations. For the first time, this
1 s6 R3 p. v0 r- y( o9 l3 r% _book presents and explains the direct correlations between tool geometry and tool
2 M, W6 J, w7 w: S% h1 w- ]performance. The second reason is that I felt that there is no comprehensive book % D5 p5 ?% g4 `
on the subject so professionals, practitioners, and students do not have a text from . [5 p+ ?& y  S: M6 L
which to learn more on the subject and thus appreciate the real value of tool + P: C1 S/ R* x, z
geometry. Finally, I wanted to share the key elements of tool geometry that I felt " v5 ]6 T+ B+ p8 w! ~
were not broadly understood and thus used in the tool design practice and in
, x7 v3 f( g! w% n; o. a3 f; Woptimization of machining operations in industry. Moreover, being directly % Z; v8 U+ Q* A& @; x9 N0 V
involved in the launch of many modern manufacturing facilities equipped with
0 {& V3 K! H1 P+ j4 y3 ~state-of-the-art high-precision machines, I found that the cutting tool industry is not
0 [$ L/ p4 G+ {) @; Y: Fready to meet the challenge of modern metal cutting applications. One of the key , `+ o6 P7 E" z1 f& T! m! i
issues is the definite lack of understanding of the basics of tool geometry of
4 X. m$ k0 N$ V3 z4 _0 }8 ?standard and application-specific tools.
8 ]% V8 i5 ^$ H7 T  @* yThe lack of information on cutting tool geometry and its influence on the
$ P% s: ?% F% Coutcome of machining operations can be explained as follows. Many great findings
" T% }, A+ Z+ |+ r0 F+ `& n) y- don tool geometry were published a long time ago when neither CNC grinding
. T  s* s1 D7 @& P) Amachines capable of reproducing any kind of tool geometry were available nor
  x  _. a9 c& zwere computers to calculate parameters of such geometry (using numerical
9 e" I7 B1 Z; |% m5 |1 h" lmethods) common. Manual grinding using standard 2- and 3-axis simple grinding
& j1 N" t3 R6 _features was common so the major requirement for tool geometry was the simpler
/ Z5 e+ F) J9 `/ Uthe better. Moreover, old, insufficiently rigid machines, aged tool holders and part
  w3 a3 Y, a) @" Nfixtures, and poor metal working fluid (MWF) selection and maintenance levered
- w% B* n! `& Y9 R# J/ e; I5 _any advancement in tool geometry as its influence could not be distinguished under 6 j0 L1 h9 D' m& ~
these conditions. Besides, a great scatter in the properties of tool materials in the & \, x; c6 S* N1 {( t
past did not allow distinguishing of the true influence of tool geometry. As a result, ; ?( `; Y; J+ ?2 V0 e" U, _) i' E
studies on tool geometry were reduced to  theoretical considerations of features of   i. ^; z6 a& V3 J" i
twist drills and some gear manufacturing  tools such as hobs, shaving cutters, ! m* j# e0 j* Q% {& f: C3 Y
shapers, etc.  
9 ]$ s  _1 @9 l1 W; rGradually, once mighty chapters on tool geometry in metal cutting and tool
# y# x9 m* l/ R; C% {- Udesign books were reduced to sections of few pages where no correlation between 9 V2 p' ^, D2 V/ U6 v
tool geometry and tool performance is normally considered. What is left is a - w! K: j) X& k. l+ l8 o
general perception that the so-called “positive geometry” is somehow better than
/ ]1 V$ H  ?, `/ w8 W( b“negative geometry.” As such, there is no quantitative translation of the word " R% W0 R) Q+ u1 O9 I( S
“better” into the language  of technical data although a great number of articles 3 w) P5 U! U! m/ F: r4 ^8 y
written in many professional magazines discuss the qualitative advantages of
( v* N( q3 c9 M, q$ N“positive geometry.” For example, one popular manufacturing magazine article
( M' _; j6 D3 `2 M& n3 cread “Negative rake tools have a much  stronger leading edge and tend to push
" H3 q) p9 U, Q& h  M% }3 Dagainst the workpiece in the direction of the cutter feed. This geometry is less free ! r" D7 u. T% }% [) ?1 ?
cutting than positive rakes and so consumes more horsepower to cut.” Reading
' j: k. `3 d3 @; Z9 Y  z4 Mthese articles one may wonder why cutting tool manufacturers did not switch their 3 J* Q6 T% c0 g' ~. _- f" J
tool designs completely to this mysterious “positive geometry” or why some of
+ ~6 [8 u9 T+ v- N, Tthem still investigate and promote negative geometry.
1 O* `( L; m+ J2 t8 b/ y+ MDuring recent decades, the metalworking industry underwent several important & J' L# ]8 w1 k, \2 {! c
changes that should bring cutting tool geometry into the forefront of tool design
. Q0 m# Z; i$ m5 d+ L, ~% M7 ]and implementation:
回复 支持 反对

使用道具 举报

 楼主| 发表于 2011-6-24 22:03:42 | 显示全部楼层
1   What Does It Mean “Metal Cutting”? ...........................................................1 5 P$ z9 j6 G, V2 r# N9 W/ P! }3 U( C; P
1.1   Introduction ...............................................................................................1
3 s) @  a: |) [  c8 w1.2   Known Results and Comparison with Other Forming Processes ..............2
9 r  d- t, w9 r0 r( D  1.2.1   Single-shear Plane Model of Metal Cutting ...................................2
1 g- i* N9 w9 K4 M) r+ f' k; L  1.2.2   Metal Cutting vs. Other Closely Related Manufacturing  
+ b6 k/ B& b( e) ? Operations .................................................................................................5
; K$ R7 K- W0 W8 l( ^* o1.3   What Went Wrong in the Representation of Metal Cutting?...................22 ) [, N' U( G! P7 j
  1.3.1   Force Diagram..............................................................................23 # v2 U$ L* Q% w( N, Y3 Q* ]! R
  1.3.2   Resistance of the Work Material in Cutting.................................25 6 h& B1 z& T9 J3 e9 l: a9 P
  1.3.3   Comparison of the Known Solutions for the Single-shear  ( o0 L6 }6 z3 p
  Plane Model with Experimental Results .................................................27 + x- t$ D4 H7 v3 V/ K
1.4   What is Metal Cutting?............................................................................28
5 @2 h' _6 z& \) e- R. U$ Q  1.4.1   Importance to Know the Right Answer........................................28 9 r7 s- m( D8 _5 y4 E
1.4.2  Definition .....................................................................................28
7 z  r- p7 a: ?9 u2 g9 B7 I  1.4.3   Relevance to the Cutting Tool Geometry.....................................29
4 T: s( X# N/ B8 W9 N# U; q1 ]- {1.5   Fundamental Laws of Metal Cutting.......................................................32
" d' ]$ Z3 ^, _8 ], Y5 r; u  1.5.1   Optimal Cutting Temperature – Makarow’s Law........................32
4 ~! l7 B$ Q8 f) D' D  S. J 1.5.2  Deformation Law.........................................................................35
' [# Y$ M8 n5 a- `( y  `5 Y2 c! JReferences........................................................................................................50
% @2 l$ e. r( c6 N 2   Basic Definitions and Cutting Tool Geometry,  - b! A/ ?: R. C* H
Single Point Cutting Tools ............................................................................55 , ^9 T+ K+ q! o$ a5 U
2.1   Basic Terms and Definitions ...................................................................55 # A0 ~9 ]6 f: B- h: B
2.1.1  Workpiece Surfaces.......................................................................57
5 a- i* t. i# ?5 Z0 \! g' N7 } 2.1.2  Tool Surfaces and Elements ..........................................................57
1 Y! ]- n" F  r; B' \ 2.1.3  Tool and Workpiece Motions.......................................................57
" ]$ S$ D' c: f: J, F) | 2.1.4  Types of Cutting ............................................................................58 . k/ A6 ]+ |' f3 F) N' Z$ I+ x- c: l
2.2   Cutting Tool Geometry Standards...........................................................60 ; k4 m3 E& d5 Z% m- K% j
2.3   Systems of Consideration of Tool Geometry ..........................................61 % k5 [0 S+ H3 a9 A! k* B& K7 r1 ~
2.4.  Tool-in-hand System (T-hand-S) .......................................................64& |9 T9 j; j  W6 l
  2.4.1   Tool-in-hand Coordinate System.................................................64 $ F2 f/ h% J8 O1 m& z( p/ B
2.4.2  References Planes ........................................................................66 6 z7 p  A1 T& J, T- f- I1 T
2.4.3  Tool Angles..................................................................................68
% R1 {4 |8 \% B% ?  2.4.4   Geometry of Cutting Tools with Indexable Inserts ......................74 - f' i  V$ z4 x  D4 i4 S  D
2.5   Tool-in-machine System (T-mach-S)......................................................84 5 ]8 r* n0 U3 u" l
2.5.1  Angles ..........................................................................................84 & ^, L- c% Z. \" }" f/ }0 ^9 e0 D2 A
  2.5.2   Example 2.3 .................................................................................88
' Z; j! q9 `6 r- I- n3 o2.6   Tool-in-use System (T-use-S) .................................................................90
' ^- d9 a  h( e: L' J# `8 S 2.6.1  Reference Planes ..........................................................................91 5 O2 q! D1 }; f5 E( m
2.6.2  The Concept .................................................................................92 $ q, R) l* b& I0 ]) Z2 W$ k
  2.6.3   Modification of the T-hand-S Cool Geometry .............................92
0 @! o, @- e( f4 |2 ~! z3 p. a9 T( W  2.6.4   Kinematic Angles.........................................................................98 1 t4 p# i5 V8 d
  2.6.5   Example 2.4 ...............................................................................100
) K# Y9 x/ y  P1 E5 [2.7   Avalanched Representation of the Cutting Tool Geometry  ; C7 L: G$ f+ s, d2 ^) O
in T-hand-S............................................................................................102 5 _; P; Z/ F% m$ O5 g+ p
2.7.1  Basic Tool Geometry .................................................................102
( g) a' }  u- k2.7.2   Determination of Cutting Tool Angles Relation
2 ]! z* I3 C* B; @" x  for a Wiper Cutting Insert ..........................................................108 1 X) p, x0 C2 v% x3 x- C2 D
  2.7.3   Determination of Cutting Tool Angles  
8 Z4 v7 N5 A4 N   for a Single-point Tool ...............................................................110
' G: X# [2 t9 J" m( x% }! w  2.7.4   Flank Angles of a Dovetail Forming Tool .................................117 7 ?! O* ?1 I. o( l  l5 ^- M
  2.7.5   Summation of Several Motions..................................................119
/ m7 m+ l( z( J( a$ fReferences......................................................................................................125
" f; R! d+ u' ]  w  a& e3 {; I3  Fundamentals of the Selection of Cutting Tool Geometry Parameters...127
- H8 K* v& p3 A/ D. b$ @3 z3.1   Introduction ...........................................................................................127
1 T7 @" ^6 n, t  e9 Y6 _; B; w" j3.2   General Considerations in the Selection of Parameters  6 A0 I. u! C1 L& X- p
  of Cutting Tool Geometry .....................................................................129 5 ], {$ N/ J! R0 }- T
3.2.1 Known Results .............................................................................129
, w4 Y/ V' O- q4 y  3.2.2 Ideal Tool Geometry and Constrains............................................130
. s0 \; U# b0 Y! T) i% g  d0 y! g& j- K  3.2.3 Practical Gage for Experimental Evaluation of Tool Geometry...132
' C) ]! w% n, A2 i7 h% D+ n3.3   Tool Cutting Edge Angles .....................................................................132
5 I" L3 Q) g5 m7 P3 g' A3 Y8 y$ H 3.3.1  General Consideration................................................................132
6 h, r" j# ~* S+ B  3.3.2   Uncut ChipT in Non-free Cutting ..............................................134 8 Q! y8 u% B5 X; z
  3.3.3   Influence on the Surface Finish..................................................142
8 f6 a$ w  D! T7 J2 x 3.3.4  Tools with κr > 90°.....................................................................144 9 Y8 F9 }" D9 d* k; t
  3.3.5   Tool Minor Cutting Edge Angle ................................................147 - z: r+ T, U- a# r  v  `* V) s" u9 v
3.4.  Edge Preparation ...................................................................................161 % K+ e0 R4 \! m* l8 k  B, L
3.4.1  General .......................................................................................161
& K- Y6 i4 f& Z6 [1 V+ E; c  3.4.2   Shape and Extent........................................................................163 & {  ^6 k0 s+ N! a
3.4.3  Limitations .................................................................................163
: I( m8 D6 b8 R6 R' F' q! s  3.4.4   What Edge Preparation Actually Does.......................................169
" S% p: {& E# X3.5   Rake Angle............................................................................................171 , E( j- v& \) B3 X& o* X# J
3.5.1  Introduction................................................................................171
  L1 t2 w4 p: e+ @% W4 [/ H* F. c  3.5.2   Influence on Plastic Deformation and Generazliations ..............175 - I- K5 e  l/ _# H
  3.5.3   Effective Rake Angle .................................................................183
0 x( V  S+ y5 h  3.5.4   Conditions for Using High Rake Angles....................................189
. W1 z8 @. h6 v2 B. `* z3.6   Flank Angle ...........................................................................................191
1 O( ~8 J2 O, n- @. K3.7   Inclination Angle...................................................................................193 0 R$ u% L; y* T# v2 m
      3.7.1   Turning with Rotary Tools.........................................................195
4 q" [/ S2 I& B, h( |7 h2 \ 3.7.2  Helical Treading Taps and Broaches..........................................197
1 V+ i1 v/ z; a7 Y1 U) ]/ k( t 3.7.3  Milling Tools..............................................................................198
. P; Q, R7 T4 l, |References......................................................................................................201 9 l* V1 D7 F5 d
4   Straight Flute and Twist Drills ...................................................................205
& m6 R5 k: x. R4.1   Introduction ...........................................................................................205
7 v" U' Q4 j- I& I6 H, t2 T4 p) \  k: y4.2   Classification.........................................................................................206 9 S- O, M5 J% x5 b* }1 z
4.3   Basic Terms...........................................................................................208
! D: T5 Y+ U2 N& F4.4   System Approach ..................................................................................211
; e  }5 t; @! q& u$ C) g3 n 4.4.1  System Objective .......................................................................212 " x/ Q# W6 y1 K+ K, F
4.4.2  Understanding the Drilling System............................................212 ! c5 n7 s: h. \/ h1 M$ A/ ?* X. [
  4.4.3.  Understanding the Tool..............................................................212 " ]! _+ v; q: ?2 `
4.5.  Force System Constrains on the Drill Penetration Rate ........................213
. _8 ], I0 E# x  4.5.1   Force-balance Problem in Conventional Drills ..........................213 , P& u$ _+ \) z8 V
  4.5.2   Constrains on the Drill Penetration Rate....................................218 # [6 g9 R8 @0 t; ~
4.5.3  Drilling Torque ..........................................................................219
8 r1 ~" a7 f) Y, t: ] 4.5.4  Axial Force.................................................................................220
" u3 W7 C4 _5 e2 J! {* K5 ?  4.5.5   Axial Force (Thrust)-torque Coupling .......................................221 ' m$ p0 d; o4 B' }. v- g& X: g2 f9 u
4.6   Drill Point ..............................................................................................223
. p( B; w. {1 b7 H, C 4.6.1  Basic Classifications ..................................................................223 2 ]/ A- @9 D& w9 S- V
  4.6.2   Tool Geometry Measures to Increase the Allowable  " A6 p- ?' e2 D8 `2 G7 Z
Penetration Rate ....................................................................................224
. `) f- T( g' |  }- m4.7   Common Design and Manufacturing Flaws..........................................259 ) K  g  Q  w$ `/ m
  4.7.1   Web Eccentricity/ Lip Index Error.............................................260 7 ?: m9 r8 M' s( e- r
  4.7.2   Poor Surface Finish and Improper Tool Material/Hardness.......261 / E, g$ L6 l9 f; W
4.7.3  Coolant Hole Location and Size.................................................263 0 [" ?" F: ~" P* h, W
4.8   Tool Geometry ......................................................................................267 6 I  U- \  l. ^# ~3 q
  4.8.1   Straight-flute and Twist Drills Particularities............................269 ; L! L# j  W& O/ a8 [( T
  4.8.2   Geometry of the Typical Drill Point ..........................................270
( [$ K$ B* e: ]6 g% N  4.8.3   Rake Angle.................................................................................272
( u) J9 s6 {& L+ T0 z9 P) o0 |  4.8.4  Inclination Angle .........................................................................280
* A, q) M2 q" x6 Y 4.8.5  Flank Angle................................................................................281
+ \% y# H2 c, V8 c# t  4.8.6   Geometry of a Cutting Edge Located at an Angle  % F( W7 m7 _* b! ]
   to the y0-plane ............................................................................292 " H7 m( W+ V* e% s
4.8.7  Chisel Edge ................................................................................295
0 x7 Q2 v9 x$ t8 o% ]  {  4.8.8   Drill Flank is Formed by Two Planes: Generalization...............306
; C* ]+ [- x& F2 z0 ]  4.8.9   Drill Flank Angle Formed by Three Planes ...............................310
+ c! h) G* o) P2 [# H 4.8.10  Flank Formed by Quadratic Surfaces.........................................313
! o4 h! y! S3 P5 L! t" D4.9   Load Over the Drill Cutting Edge .........................................................324 : u6 K& Q( x. b, T; Q) O, m: F9 S
   4.9.1   Uncut Chip Thickness in Drilling ..............................................325 2 D# y0 a, I* Z! v! `
  4.9.2   Load Distribution Over the Cutting Edge ..................................327
, `! s5 p1 A, [3 a4 C4.10  Drills with Curved and Segmented Cutting Edges ................................328
4 p4 b' l  {$ \6 F- g0 u2 H3 V  4.10.1 Load of the Cutting Part of a Drill with Curved Cutting Edges .329 " _' E5 j- p8 E! o
  4.10.2 Rake Angle.................................................................................332   s& S# T- |$ ?5 U/ c$ u
References......................................................................................................337
3 G( k1 o1 K5 n3 ~5   Deep-hole Tools............................................................................................341 ) E6 S" R; `7 I- H+ V) l
5.1   Introduction ...........................................................................................341 8 a  A& l, [' }, ^9 p
5.2   Generic Classification of Deep-hole Machining Operations.................343 ; @9 b9 ^1 O& Q$ F
5.3   What Does ‘Self-piloting Tool’ Mean? .................................................345
* d% R% ?0 F6 P- X; L7 b  5.3.1   Force Balance in Self-piloting Tools..........................................345
$ m& O# v' u; j8 F! U5 e5.4   Three Basic Kinematic Schemes of Drilling .........................................350
5 f1 u6 W( p2 z! d  5.4.1   Gundrill Rotates and the Workpiece is Stationary .....................351 ) h. x' c5 ?0 [( f# j9 U
5.4.2  Workpiece Rotates and the Gundrill is Stationary .....................352
# D0 R9 l6 g3 j 5.4.3  Counterrotation ..........................................................................352
( E$ t, m& H/ J  R5.5   System Approach ..................................................................................353
7 U; {3 n% `0 p/ B  Q+ n8 L( ^1 i  5.5.1   Handling Tool Failure ................................................................353
' J) \" s7 {( W8 _% {# L& U& Y 5.5.2  System Considerations ...............................................................354 3 R% M9 O& t4 s- L4 r* K; N" j
5.6   Gundrills................................................................................................362
2 v" Y% y7 Q7 z$ y7 D 5.6.1  Basic Geometry..........................................................................362
2 {9 W! e: z5 x 5.6.2  Rake Surface ..............................................................................365 $ g7 Z  M0 G6 I' T7 z
  5.6.3   Geometry of Major Flanks .........................................................370 5 T- i% G9 N1 E
5.6.4  System Considerations in Gundrill Design ................................390
! C9 h! W9 b- X. j& I  ?5.6.5   Examplification of Significance of the High MWF Pressure
7 `- g  ^, K3 q6 T  in the Bottom Clearance Space ..................................................423 2 A0 O. {/ e6 Q+ q) n3 T+ W7 A( G1 W
  5.6.6   Example of Experimental Study ................................................425
6 u! T- t1 [6 D7 X. v$ C( a. ]& ]  5.6.7   Optimization of Tool Geometry.................................................439
! H" }- y! ]0 sReferences......................................................................................................440
7 l. ^; E: W, N; NAppendix A  
- ?: i1 u2 ]1 J2 [) R$ OBasic Kinematics of Turning and Drilling.......................................................443 . y' r) n: K  e) R7 m
A.1   Introduction ...........................................................................................443
1 @4 z: b$ `) E- q: M8 JA.2  Turning and Boring ...............................................................................444 ! ?( r$ ?5 ]: T+ R
  A.2.1  Basic Motions in Turning...........................................................444
2 ~7 V1 w" v8 R" K7 n& T) Z  A.2.2  Cutting Speed in Turning and Boring ........................................448
5 s4 u; u1 N" B. P3 Y  A.2.3  Feed and Feed Rate ....................................................................448
( E: i- p5 F+ k  A.2.4  Depth of Cut...............................................................................449 + U$ k, ]% v5 G! p2 I
A.2.5  Material Removal Rate ..............................................................449 # ?* V1 v, k: v( ^0 N
A.2.6  Resultant Motion........................................................................450
8 n7 J6 e  K5 tA.3  Drilling and Reaming ............................................................................450
* l3 Z% O9 `# d+ E& ]1 v+ O A.3.1  Basic Motions in Drilling...........................................................450
1 v! d* T4 t  }4 v A.3.2  Machining Regime.....................................................................451 ) u  Q$ g, L+ T7 m/ ?/ \
A.4  Cutting Force and Power .......................................................................453 * o3 B7 a! e, {) ^4 f( ^% t0 _6 |" B
  A.4.1  Force System in Metal Cutting...................................................453 6 r6 S# Q. U; [" }3 C
  A.4.2  Cutting Power ............................................................................454 ; G" J- R7 P; R! P( ~% t* _
A.4.3  Practical Assessment of the Cutting Force.................................455
9 O3 Z/ y4 T- t' i# @References......................................................................................................461 0 F4 j7 P4 j8 n
Appendix B  
3 l- d9 Z3 F" ~  D- N$ P/ R, cANSI and ISO Turning Indexable Inserts and Holders.................................463   V3 _, z3 O. m4 I. M; k
B.1   Indexable Inserts ...................................................................................463
! O; Q4 K7 l' y* ~  B.1.1  ANSI Code .................................................................................464 " Q- ]4 h) L( _% z, U
B.1.2  ISO Code....................................................................................471
( i$ L9 `5 X* u+ ?3 J$ |* w  V- x4 ]- z  B.2 Tool Holders for Indexable Inserts (Single Point Tools) ......................491
+ x+ F0 U9 ~) c0 m6 L; H% o  B.2.1   Symbol for the Method of Holding Horizontally Mounted    R" P, y" S" U) d
Insert – Reference Position (1) ..............................................................492 ( w2 m9 W4 g- O5 ^- [6 @7 y
  B.2.2   Symbol for Insert Shape – Reference Position (2) .....................493 # W/ {" q2 z- C
  B.2.3   Symbol for Tool Style – Reference Position (3) ........................493
2 r$ \4 v9 @/ ]3 @0 _  B.2.4   Letter Symbol Identifying Insert Normal Clearance –  - L  |% r6 y& v. q- Y, }
   Reference Position (4)................................................................494
+ t, N8 ^9 ~: ]: N3 u, [) h0 B. R  B.2.5   Symbol for Tool Hand – Reference position (5) ........................494
4 n( |3 V/ |) A/ X5 h- Q# t% Z  B.2.6  Symbol for Tool Height (Shank Height of Tool Holders  
3 A; p8 o7 x( J  o, V9 n) _    and Height of Cutting Edge) - Reference Position (6) ...............494
) H' S* j& G2 L  B.2.7  Number Symbol Identifying Tool Holder Shank Width –  
6 w9 Y$ c4 U: B2 s1 Z   Reference Position (7)................................................................495 * E$ |- U5 x7 `5 D9 U8 X2 _+ b+ s
  B.2.8  Number Symbol Identifying Tool Length –  - \- K7 ?5 {$ `( G5 K& V/ N# _
   Reference Position (8)................................................................495 ; X/ o1 V9 @4 V
  B.2.9   Letter Symbol Identifying Indexable Insert Size –  
4 o0 u9 m) ?9 G. y   Reference Position (9)................................................................497
. ?6 [% G. P2 _$ i* E; aAppendix C  
, N% s8 v/ h" ~* n# V: L& F3 uBasics of Vector Analysis ..................................................................................499
; Y/ G8 V% G6 M  j" A/ JC.1   Vectors and Scalars ...............................................................................499 4 G: o; m: [, u: \! ?) G+ G4 j& j
C.2   Definition and Representation...............................................................500 + z* T$ ~- Z; d: k1 E% i0 J: u
C.2.1  Definitions..................................................................................500 9 m  X* x( c3 b' T
C.2.2  Basic Vector Operations ............................................................503   W( C- X# J: U, {# s; o. Z' }
C.3   Application Conveniences.....................................................................509
9 H% w* J* V/ E8 x2 M$ sC.4  Rotation: Linear and Angular Velocities...............................................511 1 {2 x" s& z$ R. g
  C.4.1   Planar Linear and Angular Velocities ........................................511 % S3 `8 k* o1 q! }# j
  C.4.2   Rotation: The Angular Velocity Vector .....................................515
$ x  j; }+ F! D; \( I! j; f& BReferences ...........................................................................................................518 ; u- h. q2 B7 C. f4 r- b
Appendix D  
* t6 k6 L& c! |8 ^4 k, {Hydraulic Losses: Basics and Gundrill Specifics............................................519
' d5 y( t! G0 f) t9 q% U5 WD.1  Hydraulic Pressure Losses – General ....................................................519
! O7 e! U$ a$ X D.1.1  Major Losses: Friction Factor ....................................................520
1 \: c/ s7 G7 z0 `  D.1.2  Minor Losses (Losses Due to Form Resistance) ........................521 - _! S, H: _# b( Y* u
D.2  Concept of the Critical MWF Velocity and Flow Rate .........................521   @% m- {1 r9 J' B3 ]
  D.2.1  MWF Flow Rate Needed for Reliable Chip Transportation.......522 ; _0 D& S* D/ D3 c: K! h9 v
  D.2.3  Example D.1...............................................................................527 $ o% l: x" O' S% Y3 J: o9 W
D.3   Inlet MWF pressure...............................................................................528
) c9 C4 j$ V, S" @3 ?' }/ jD.4  Analysis of Hydraulic Resistances ........................................................532 " w! m- u* B& v5 H; y6 i
  D.4.1  Analysis of Hydraulic Resistances Over Which the Designer  + K8 A- C/ v! {2 K! d& q
    Has No or Little Control ............................................................532
6 I+ M" ~9 e! N$ J  D.4.2  Variable Resistances Over Which the Designer Has Control ....535
" f: a4 ^" A8 C* rD.5   Practical Implementation in the Drill Design ........................................539 1 K4 t6 [8 Z  @8 @( ^
References ..........................................................................................................543 * f, j' A+ k/ b' j$ V! I
Appendix E 2 P3 N! z' `2 e3 a8 }  z+ Y0 s5 G
Requirements and Examples of Cutting Tool Drawings................................545
8 F! S9 ^( k1 C& R/ {4 S2 aE.1   Introduction ...........................................................................................545 8 C0 e% u/ _  w% M9 W1 m0 Q
E.2   Tool Drawings – the Existent Practice ..................................................546
1 l- R; ?2 D9 U; pE.3   Tool Drawing Requrements ..................................................................548
3 C$ D" ^# @! H$ B4 bE.4   Examples of Tool Drawing ...................................................................553 # u; q" R+ G: T3 J% H6 e9 h& u
References ..........................................................................................................559 % n6 _0 R1 ]4 a6 _* i+ k
Index…………………………………………………………………………….561 1 N* z2 o# l, m. \8 L# C
) n( y" K% |+ n1 ]; Y! `# L

( A0 B8 T& g, L1 l" N' x1 Z
回复 支持 反对

使用道具 举报

发表于 2011-6-25 13:07:50 | 显示全部楼层
都是些神马?
回复 支持 反对

使用道具 举报

发表于 2011-6-25 13:33:41 | 显示全部楼层
埋头挖矿中。。。。。。。。。
回复 支持 反对

使用道具 举报

发表于 2011-6-26 15:14:56 | 显示全部楼层
好东西啊。。。只是,刀具不是我的工作。。。顶起,不沉。。。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2011-6-26 18:10:54 | 显示全部楼层
专业人士自有看法。
回复 支持 反对

使用道具 举报

发表于 2011-6-27 18:42:38 | 显示全部楼层
好东西啊,英文的,看着太费劲了
回复 支持 反对

使用道具 举报

发表于 2011-6-27 21:53:22 | 显示全部楼层
从网上查找这本书是Springer Series in Advanced Manufacturing丛书中的一本
3 c# @' {& U& j, s5 g请问这套丛书共包含哪几本书
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

小黑屋|手机版|Archiver|机械社区 ( 京ICP备10217105号-1,京ICP证050210号,浙公网安备33038202004372号 )

GMT+8, 2024-11-24 10:30 , Processed in 0.061530 second(s), 19 queries , Gzip On.

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表