微机电系统(MEMS)正逐渐进入消费品、工业、医药、汽车及计算机应用市场。而且,我们不能忽视它们在仪器、军事和科研行业的稳步进展。显而易见,微机电系统的繁荣时代已经到来。
; A6 k' N& g; K4 z$ H3 ?. q 在最近的大型展会中的大量演讲都说明了这一事实。MEMS技术的成熟为何如此迅速? 许多观察者认为其原因有三:MEMS集成电路测试、原型开发和封装的标准开发,MEMS生产和工艺的进步,以及软件设计工具的改进。 # M# i% q+ L7 l( c- J
MEMS器件的集成度已经提高,并且在价格上也有所下降,这样一来在许多应用方面都极具竞争优势。它们的集成水平不断提高,从具备单独驱动程序、信号调理、接口和控制电子的分立器件,一直到同一芯片上汇集几乎所有功能的单片元件。
& d/ w* T' |+ b" p' i; D2 c有关后者的一个很好例子就是Freescale Semiconductor推出的一系列新型低成本的低重力加速计。这些电容性MEMS传感器可以感应倾斜、运动、位置、震动和颤动。这些器件广泛应用于消费品、计算机、汽车、工业、医药和科研市场。
# C ?, D f+ }: G从功能上讲,现在MEMS器件的应用几乎包罗万象,其中包括各种类型的传感器、开关、可调谐电容器、电感器、天线、传输线、滤波器和谐振器。最大的供应商包括Agilent Technologies和Infineon(生产谐振器)、Memscap和台湾的Wolshin(生产MEMS滤波器)、以及Teravicta和 Magfusion(生产MEMS开关)。 2 q) E& e0 u4 m8 {
MEMS技术甚至正在对常见的磁控开关发起挑战。Memscap已开发出一种表面贴装式MEMS 电磁接近开关,尺寸为1.8 x 1.8 x 0.8mm(图1)。它代替了体积较大的磁控开关,目前市场上最小的磁控开关,体积仍然是这种开关的两倍以上。凭借顶级滤波器供应商的显赫地位, Memscap成为制造MEMS器件的主要厂家。
+ t$ h9 d' o9 j5 N2 M) O9 O) E+ ]9 I! a: \" }
9 U% [+ S/ N7 J( Q8 L- f6 v
1 `. n( n6 m! O4 C1 W
M0 Y4 W6 s; b
 | . I1 @7 @/ q: v, y9 M
( [7 r' Q" a9 {# K6 T" k5 z$ S* ? | ( |# P8 I% g( E' Z! ]3 ~7 w. }' }
汽车市场正在逐步发展壮大。MEMS器件发展最快的一个应用领域就是汽车行业。目前,所有的轿车都使用了许多压力传感器和加速计传感器,其中以驾驶员和前排乘客安全气囊的自动膨开功能为最。现在,许多汽车制造商都在额外的安全气囊中使用MEMS传感器,一类用于侧面碰撞气囊,另一类用于翻车时用到的顶部气囊。 : N/ _6 z1 |* N6 `+ m( p
“在汽车市场上,MEMS器件的可能用途在70种以上,”Roger Grace Associates主席Roger H. Grace说,他是MANCEF的前任主席,MEMS技术和市场的权威人士。“许多MEMS器件最初应用于高端汽车中,如奔驰和宝马,与低端汽车相比,它们的性能和便利性远比其相对较高的成本重要。” 5 ?5 O* ~/ R7 d. T y& t
例如,自适应驾驶控制和电子控制悬架系统,它们都使用VTI Technologies的MEMS低重力加速计(0.5到12g)(图2)。“我们是高端汽车厂商最大的供应商,例如沃尔沃、奔驰、卡迪拉克,为他们的电子控制悬架提供MEMS产品。在轮毂和参照点(如后备箱)中要使用三到五个这样的传感器,”VITI Technologies的市场和销售总监Rick Russell说,“汽车制造商甚至考虑在马达减震中使用这些传感器,同时在发动机支架中安装执行器。”
8 i1 u: [. ~$ y5 v3 B
/ C: @- W+ i* ^+ W8 S6 L7 B6 ^2 p
, _! p% U1 E8 ~8 _% c) b, Y7 P
+ c: u6 Z- }2 ^ |
* L! L% N5 C5 d9 G8 r |
" ?0 f! g2 W- p0 v1 }5 z6 s
5 I# ], c' K" g/ X( C p4 e | 3 t. `$ \% e4 C) W
“新的应用通常会从高端汽车市场开始。然后,再转向低成本、高产量的车型,”Grace说。尽管,目前汽车中的“杀手级”应用包括歧管绝对压力(MAP)和安全气囊加速计传感器,但是Grace预言将来“杀手级”应用的范围将更广泛,如角速率、轮胎充气、轮速、自适应刹车、燃料气化、油管、凸轮轴/曲轴位置、线传控制和乘客座位等。 2 ^. k( x1 Y9 P' M" }# H% A" r# \
以下公司制造的MEMS加速计占据了约90%的MEMS汽车市场:Analog Devices、Bosch、Dalsa、Delphi-Delco、Denso、Infineon、Motorola、VTI Technologies和X Fab。然而,更广的应用却是在轮胎压力监测方面,美国政府国家公路运输和安全管理局(NHTSA)的TREAD(运输召回加强、责任和归档)法案对此进行了明文规定。该法案要求2006年以后制造的所有车辆中都需配备轮胎压力监测系统。汽车行业分析公司J.D. Power & Associates预测,截至2007年,轿车中将配备1,700多万套轮胎压力监测系统。 , \* R* ]8 b* r" X9 [% T4 |* C
目前,汽车电子供应商更喜欢用直接压力监测方法来代替间接方法,为轿车的每个轮胎的轮毂中都配备了压力传感器。使用间接方法时,轮胎压力是根据参数计算的,而不是根据实际的内部轮胎压力计算的,因此,轮胎压力是一个估计值,而不是精确的读取值。而使用直接系统时,每个轮胎压力监测系统都包含一个微控制器和一个RF发送器,该发送器将信息通过仪表板上的读数器传递给驾驶员。 ; Q3 r! S8 K! h; B
Melexis对轮胎压力监测系统进行了细致的研究,内容包括间接、直接方法以及它认为是“智能型”的轮胎压力监测系统。结论是,哪种方法最好尚无定论。其中的一个问题就是传感器电池电源,它必须能够在极端温度条件下正常工作,还要能耐热和抗震。 9 o& Y# x3 t: h6 o( m
根据Melexis的轮胎压力监测系统产品经理Dirk Leman的观点,对于无源的直接轮胎压力监测系统而言,每个轮室传感/发送系统的生产成本可能达到6美元,而使用电池的系统的生产成本则为5美元。事实上,该公司已使用“能量采收”和13MHz磁耦合技术证明了这样的系统(图3)。动能是可由轮胎运动产生的,或者通过装在轮室内的RFID天线和轮胎压力传感器上的接收器之间的电磁耦合作用感应产生。
, V. B2 M6 y% i
! d( a0 ~, G3 U! d, O
$ N. }# ]2 [ c& M
; M7 T) b1 ]$ L4 d# y
7 L% ^8 Y% |0 Z( W0 c |
1 T" y4 v* u, C6 A! D" G5 S) k* }: q* J& N
| 3 ?/ w9 ?( g2 f1 Z
根据Siemens VDO Automotive的分析,每辆新车的平均成本估计只要增加66.33美元,即可使用直接轮胎压力监测系统。该公司正与Goodyear Tire and Rubber Co.合作,为欧洲车辆开发使用RF传输的这种系统。该系统名为Tire IQ,它使用两个由Hitachi Maxell Ltd开发的耐高温(总电压为3V)、锂锰(LiMnO2)钮扣电池,这种电池的寿命至少为五年,甚至可能达到10年。 / X. h1 g- ?# |: C& ?2 l
VTI Technologies还提供轮胎压力监测系统中用的8g MEMS加速计。该公司宣布明年将研制出一种三轴加速计,它可以用于更多的汽车和非汽车领域。
" s9 @9 W1 [1 V2 L: p# XMEMS 的身影已经出现在智能家居消费领域。家庭影院投影电视中就用到MEMS器件,该投影电视应用了Texas Instruments的数字光处理器(DLP)(图4)。其他例子还有立体声组合音响、电视游戏、健康秤、温度计、便携式血压测量计、吹风机、健身设备、洗衣机、电冰箱、洗碗机、微波炉、烤箱、真空吸尘器和家庭安全系统等。唯一缺少的就是可将这些基本构造单元连接起来的网络,进而能让家庭变得更加智能化。
9 b$ E4 U. b6 Z# i& h( k
, _* `' v: M$ [8 L$ g
5 E# L( `* W9 D ^9 B5 i S* P+ c1 X ^
8 }, i6 m, M0 n2 i# t0 a, h
 |
- m! n: r1 n5 e6 n( p
/ }( A8 V6 ~7 T |
1 n( b( `5 [3 \更加经济的测试
6 |& t5 H4 ~( z$ C$ A* P c测试和封装占据了MEMS器件最终成本的很大一部分。 尽管ETEC等公司已率先创建了整体自动化MEMS测试系统,但是这些领域仍处于发展阶段。 3 O3 b7 [* ]+ j1 V+ ]& }- F
例如,在2004年度COMS会议上,Fraunhofer微电子和系统研究院所作的报告中提到一种非常经济的基础设施,它可以进行整体集成压力传感器的晶片级测试、校准和组装。该系统的精确率低于±1%,年产量为几百万个传感器。在这次会议上,Scanimetrics讨论了采用无线探针卡的改良晶片级测试方法。该公司说,这将大大提高晶片测试的有效性,并且可以降低测试成本。
; B3 `0 D( L v, S" Q+ rSuss-MicroTec在MEMS测试方面取得了重大的突破,它开发出晶片级的MEMS器件的下一代测试设备(图5)。该设备提供了标准化的测试方法,从而降低了成本。该设备可以在处于工作状态的MEMS器件所处的高温和低温环境和潮湿条件下使用声音、光线、压力、运动,甚至是液体来进行模拟或测量。 , q$ s/ A6 k- G7 L
& A! m4 D$ \' E0 T) }
1 x' }/ q v4 {9 p Z Z! Q0 P, c' a( [2 p! j; G% t
# _3 P; b. w `9 T# S. g: I) E) `
 | # ?, {8 _5 z( p' {
" }$ Q6 p. p9 O& l% W0 V h2 L
| ' h# M: Z/ y; v
Suss设备的一项主要应用就是测试汽车轮胎压力传感器。其他的目标应用领域还包括惯性传感器、微量热型探测器,甚至声学MEMS扬声器。
0 J9 F9 o1 v' y7 y2 j软件助了一臂之力 , s7 t7 `8 ^, f& ?! g
正如前面提到的,封装成本占了MEMS器件最终成本的一大部分。实际上,都可能达到总产品成本的80%。尽管MEMS器件的封装开发正在进行当中,但还是软件起了很大的帮助作用。用于开放工具封装的三维软件(例如由Coventor提供的软件)可以大幅降低封装成本。这些MEMS专用的软件包允许工程师们按照头脑中的封装方式进行MEMS芯片设计,之后再将芯片放入封装或选择封装。该软件包含各种开放工具封装类型的模型表示,软件库中对几何形状和封装材料类型进行了说明。因此,设计者可以较低的成本将使用MEMS的产品更快地投入市场。最近,Coventor发布了一种汽车“设计工具集”软件包。通过该软件包,MEMS设计者可以构造复杂的器件,如用于汽车领域的加速计、陀螺仪和压力传感器,这些都需要经过多次物理域分析。
3 |% h- c& B( ]RF应用将不断扩大
. i9 w, k d# W. X9 \ ?" p在MEMS 器件的应用中,RF MEMS的微波和毫米波应用是利润最为丰厚的一项。与传统的商用器件相比,RF MEMS器件除了具备进一步集成和微型化的潜力以外,还拥有低功耗、高线性和高品质因数等优点。而且,还可以采用许多不同的工艺制造这些器件,如使用硅、砷化镓(GaAs)、碳化硅(SiC)和绝缘硅(SOI)基片等。在过去的几年里,Agilent Technologies和Infineon一直为手机提供RF MEMS开关。 * i) p: x" @. m$ e( l7 B6 S% Z
RF MEMS开关表现出优越的RF特征,例如在RF频率较低(VHF约为10GHz)的串联配置开关中,插入损耗约为0.1dB,隔离度约为30dB。这使得这些开关非常适合在RF前端、电容器组、路由延时相移网络和可电子重构天线中进行转换绕线。
6 X6 S' X5 U Q) X* j5 aRF MEMS在军事领域和汽车行业应用最多。在军事应用方面的一个目标领域就是相阵雷达系统-单个相阵雷达系统可以使用50万个RF MEMS开关。尽管汽车领域并不是一个很大的市场,但是其中包括雷达防撞系统。
: L1 H- v$ {1 y$ M$ Z# i在一年或两年的时间里,工作频率为10GHz及更高的RF MEMS器件将应用于高速仪器前端和汽车雷达中。与其他方法相比(通常,没有其他方法),这些器件的高层次性能将抵消其相对较高的成本。 此外,RF MEMS在军用雷达、智能武器和卫星通信设备的应用前景也很乐观。 7 A/ Q' [- \& D3 t- m: m
根据Wicht Technologie Consulting(WTC)的分析,如Fujitsu、IBM、Intel、Matsushita、Memscap和Philips等大公司,以及如 Discera、Epcos、LG、Electronics和MEMX等其他公司已经证明了RF MEMS开关的用处,并且预计将在以后的几年中进行试验并大规模生产这些产品。研究还表明,可以在集成CMOS器件的同一基片上集成高压RF MEMS器件,从而进一步拓宽RF MEMS在无线通信领域中的应用。此外,RF MEMS器件将在无线手机和基站领域创造重大机遇。无线传感器网络在国防安全应用中的发展还会在很大程度上影响RF MEMS器件的用户。 " ~' o: b% B* l. d
预言未来 1 m0 O" T2 @5 ]
预计MEMS器件将继续提高集成水平,最终成为一个芯片,它不仅可以容纳MEMS元件及其信号调理电子器件,而且还可以容纳控制电子器件。“我们确实需要对混合和单片IC提供更高的集成水平,包括单个封装中的通信功能和智能。”Grace说。 " B5 A" V8 s! l# d6 N
新型材料将增加MEMS的商业吸引力。目前,许多麦克风和微型扬声器MEMS器件都是使用电容型转换器制造的。然而,研究表明可以用MEMS铁电薄膜来代替。铁电薄膜更容易制作,不要求极化电压,而且它们的动态范围更广泛。在许多国家(加拿大、中国、德国、法国、印度、韩国、墨西哥、荷兰、台湾和英国)以及美国的许多州已建立起20多个MEMS技术“群集”,标志着MEMS正在发展和成熟。根据Grace的观点,这些“群集”往往在研发中心区域出现,那里有学术和工业研究实验室以及风险投资。 ! _ r) v, T5 ~6 @- h' M
最终,无论我们何时提到MEMS技术,一定会提到纳米技术,即微型化的下一个逻辑步骤。但是,纳米技术还需解决众多的技术障碍,才能取得商业性成功。 8 |/ o5 |( ]% ~/ {0 R7 f
作者:Roger Allan 2 {- J! l( m* L+ P0 K
|