|
慢走丝线切割机床应用广泛而又重要,在塑料模、精密多工位级进模的生产加工过程中,能保证得到良好的尺寸精度,直接影响模具的装配精度、零件的精度以及模具的使用寿命等。由于加工工件精度要求高,因此在加工过程中若有一点疏忽,就会造成工件报废,同时也会给模具的制造成本和加工周期带来负面影响。
. L4 p0 y8 ~6 `0 a4 }在从事慢走丝切割机床编程与操作加工过程中,结合多年的生产实践,针对加工过程中所出现的变形问题及遇到的困难,总结了几点工艺处理方法和加工操作方案2 凸模加工工艺
& d8 y1 u% U/ u0 P凸模在模具中起着很重要的作用,它的设计形状、尺寸精度及材料硬度都直接影响模具的冲裁质量、使用寿命及冲压件的精度。在实际生产加工中,由于工件毛坯内部的残留应力变形及放电产生的热应力变形,故应首先加工好穿丝孔进行封闭式切割,尽可能避免开放式切割而发生变形。如果受限于工件毛坯尺寸而不能进行封闭形式切割,对于方形毛坯件,在编程时应注意选择好切割路线(或切割方向)。切割路线应有利于保证工件在加工过程中始终与夹具(装夹支撑架)保持在同一坐标系,避开应力变形的影响。夹具固定在左端,从葫芦形凸模左侧,按逆时针方向进行切割,整个毛坯依据切割路线而被分为左右两部分。由于连接毛坯左右两侧的材料越割越小,毛坯右侧与夹具逐渐脱离,无法抵抗内部残留应力而发生变形,工件也随之变形。若按顺时针方向切割,工件留在毛坯的左侧,靠近夹持部位,大部分切割过程都使工件与夹具保持在同一坐标系中,刚性较好,避免了应力变形。一般情况下,合理的切割路线应将工件与夹持部位分离的切割
, l2 s" A! Y, {, J5 z, R( Y段安排在总的切割程序末端,即将暂停点(Bridge)留在靠近毛坯夹持端的部位。
2 } N' I/ ]% J& m! I 下面着重分析一下硬质合金齿形凸模的切割工艺处理。一般情况下,凸模外形规则时,线切割加工常将预留连接部分(暂停点,即为使工件在第1次的粗割后不与毛坯完全分离而预留下的一小段切割轨迹线)留在平面位置上,大部分精割完毕后,对预留连接部分只做一次切割,以后再由钳工修磨平整,样可减少凸模在慢走丝线切割上的加工费用。硬质合金凸模由于材料硬度高及形状狭等特点,导致加工速度慢且容易变形,特别在其形状不规则的情况下,预留连接部分的修磨给钳工带来很大的难度。因此在慢走丝线切割加工阶段可对工艺进行适当的调整,使外形尺寸精度达到要求,免除钳工装配前对暂停点的修磨工序。 由于硬质合金硬度高,切割厚度大,导致加工速度慢,扭转变形严重,大部分外形加工及预留连接部分(暂停点)的加工均采取4次切割方式且两部分的切割数和偏移量(Offset)均一致。第1次切割电极丝偏移量加大至0.5—0.8mm,以使工件充分释放内应力及完全扭转变形,在后面3次能够有足够余量进行精割加工,这样可使工件最后尺寸得到保证。
. g% i0 _! x& S5 i具体的工艺分析如下:
$ f( I. z P5 w% I9 O) _! X" P$ v W5 Q(1)预先在毛坯的适当位置用穿孔机或电火花成形机加工好Φ1.0—Φ1.5mm穿丝孔,穿丝孔中心与凸模轮廓线间的引入切割线段l长度选取5—10mm。 # t5 i# A$ }9 W8 F" @, p# {$ b
(2)凸模的轮廓线与毛坯边缘的宽度应至少保证在毛坯厚度的1/5。
) N3 D9 y7 F( p% ](3)为后续切割预留的连接部分(暂停点)应选择在靠近工件毛坯重心部位,宽度选取3—4mm。 y% }2 g& {) p1 w
(4)为补偿扭转变形,将大部分的残留变形量留在第1次粗割阶段,增大偏移量至0.5—0.8mm。后续的3次采用精割方式,由于切割余量小,变形量也变小了。
7 m1 t0 d9 h' q6 I1 w" n" J(5)大部分外形4次切割加工完成后,将工件用压缩空气吹干,再用酒精溶液将毛坯端面洗净,凉干,然后用粘结剂或液态快干胶(通常采用502快干胶水)将经磨床磨平的厚度约1.5mm的金属薄片粘牢在毛坯上,再按原先4次的偏移量切割工件的预留连接部分(注意:切勿把胶水滴进下水嘴或滴到工件的预留连接部分上,以免造成不导电而不能加工)。 5 N F( k9 e5 d1 m, B8 t+ j
3 凹模板加工中的变形分析
& `0 g0 k2 ^1 y! U2 j1 ~在线切割加工前,模板已进行了冷加工、热加工,内部已产生了较大的残留应力,而残留应力一个相对平衡的应力系统,在线切割去除大量废料时,应力随着平衡遭到破坏而释放出来。因此,模板在线切割加工时,随着原有内应力的作用及火花放电所产生的加工热应力的影响,将产生不定向、无规则的变形,使后面的切割吃刀量厚薄不均,影响了加工质量和加工精度。 * f9 ~# k8 F# ~: C
针对此种情况,对精度要求比较高的模板,通常采用4次切割加工。第1次切割将所有型孔的废料切掉,取出废料后,再由机床的自动移位、自动穿丝功能,完成第2次、第3次、第4次切割。a切割第1次,取废料→b切割第1次,取废料→c切割第1次,取废料→……→n切割第1次,取废料→a切割第2次→b切割第2次→……→n切割第2次→a切割第3次→……→n切割第3次→a切割第4次→……→n切割第4次,加工完毕。这种切割方式能使每个型孔加工后有足够的时间释放内应力,能将各个型孔因加工顺序不同而产生的相互影响、微量变形降低到最小程度,较好地保证模板的加工尺寸精度。但是这样加工时间太长,机床易损件消耗量大,增加了模板的制造成本。另外机床本身随加工时间的延长及温度的波动也会产生蠕变。因此,根据实际测量和比较,模板在加工精度允许的情况下,可采用第1次统一加工取废料不变,而将后面的2、3、4次合在一起进行切割(即a切割第2次后,不移位、不剪丝紧 $ D. r. L7 i4 K9 o' y' ~8 d' _
接着割第3、4次→b→c……→n),或省去第4次切割而做3次切割。这样切割完后经测量,形位尺寸基本符合要求。4次及3次切割中各次的加工余量、加工精度、表面粗糙度的参考值见表1及表2。初步估算一下,型孔之间的移位、穿丝、剪丝、上水、下水等均按1min计算。采用这种切割方法,加工1块有100个型孔的模板,每次将会节省大约9h的加工时间,切割4次共节省大约30h,这样对使用费用昂贵的慢走丝线切割机床来说,既提高了生产效率,又降低费用消耗,因此也降低了模板的制造成本
3 @5 D4 V* B4 u( `5 R' K( p4 凹模板型孔小拐角的加工工艺
! [9 E+ s+ E0 [3 F* K- j+ m2 B" I* I由于选用的切割丝直径越大,切割出的型孔拐角半径也越大。当模板型孔的拐角半径要求很小时(如R0.07—R0.10mm),则必须换用细丝(如Φ0.10mm)。但是相对粗丝而言,细丝加工速度较慢,且费用昂贵(大多需进口丝)。如果将整个型孔都用细丝加工,就会延长加工时间,造成浪费。经过仔细比较和分析,我们采取先将拐角半径适当增大,用粗丝切割所有型孔达到尺寸要求,再更换细丝统一修割所有型孔的拐角达到规定尺寸。 |
|