摩擦学原理; s& ^* p* X) Q( @* K
(第2 版)- c7 g$ e8 b: V U, ?9 ^2 L
温诗铸 黄 平$ X V: n3 x' M% K' R# C3 K3 p: D* E
清华大学
/ Y0 T1 m( f( E7 C+ p第一篇 润滑理论与润滑设计; x5 s, I* c' W& A5 n
第1 章 润滑膜流变特性⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2
0 t) _2 K h, I# Q- Y5 s, {5 r1 .1 润滑状态⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3
7 @6 D9 W( n2 K' m/ B* \( |1 .2 润滑油的密度⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5
' a. D1 t7 s$ c0 x/ m+ X0 M1 ~- a8 M1 .3 流体的粘度⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6) `- F- q! ]/ z- P% [
1 .4 非牛顿流体⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 12) s# u1 |6 ^/ _ y0 g- e
1 .5 粘度的测量与换算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 18$ o% Q8 m; |9 S3 B/ V
第2 章 流体润滑理论基础⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 22* H( G& c( u& ?( H
2 .1 雷诺方程⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 23
5 a/ s4 O4 ~2 z! J$ v- G5 f2 .2 流体动压润滑⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 27
1 C6 S+ P+ O* z* A' o# s2 .3 线、点接触问题的弹性力学基础⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 31" |* B" g+ }" v4 ?
2 .4 弹性流体动压润滑( 入口区分析)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯36$ G0 B# u6 W& P; R! x5 o
2 .5 润滑脂的润滑简介⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 40
0 L j5 k- k2 c7 f0 }2 .6 广义雷诺方程⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 42
5 d! M1 B' d& k第3 章 润滑计算的数值解法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 50
) }. z+ b; `0 V8 D# u: S- \4 N3 .1 雷诺方程的数值解法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 51) A! J2 {2 B" P" E
3 .2 能量方程的数值解法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 63
) V# b2 N4 H$ i% w4 p3 .3 弹性流体动压润滑数值解法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 68
$ E" a: D: Q/ j2 f. Y# \' r3 c3 .4 多重网格法求解润滑问题⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 79
: [. i& ]5 b6 L) O第4 章 典型机械零件的润滑设计⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 94
( o7 J1 ^( e/ K% }4 .1 滑块与推力轴承⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 943 S9 h) N `" |; V$ U- I7 `# ~
4 .2 径向滑动轴承⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 100
2 X8 X4 `' x- N4 .3 静压润滑⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 107) m: D% R" V ^' _' Y$ k
4 .4 挤压膜轴承⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 112
9 H. k, h' y3 e/ F) b8 G4 .5 动载轴承⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 116
& h* Z& F, e9 d. C4 .6 气体轴承⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 124
6 b* ]$ n* j* H3 X' r& U; f+ g4 .7 滚动轴承⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 129
- u0 l# B9 k' G& u4 .8 齿轮传动⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 132) h- c8 B8 }1 w9 S
4 .9 凸轮机构⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 138
7 B( z2 b- { T8 `: F! Z4 .10 弹流润滑状态图⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 140
5 M1 h+ |0 z- h) r9 Z第5 章 特殊流体介质润滑⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 147! `; h0 p* L+ ~7 n% S3 n
5 .1 磁流体润滑⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 147
+ l( ]% w, j3 |0 V5 .2 微极流体润滑⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 154
7 P5 D0 i# [( F5 T: Y' [5 .3 液晶润滑⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 161/ B- V1 l. k t
5 .4 陶瓷水润滑薄膜中的双电层效应⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 170% {& y" d% p3 E1 a7 v. X; N3 t* H
第6 章 边界润滑与添加剂⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 179/ f' S: c: m8 z; ?$ R
6 .1 流体润滑向边界润滑的转化⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 179
1 X9 l0 J$ N# J$ q0 q6 .2 边界润滑的类型⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 181" v+ z9 {: f3 C a
6 .3 边界润滑的理论⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 189
4 j5 x) J! y& W W. t1 G# [$ G) P6 .4 润滑油的添加剂⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 194. p: U, O% ~) r% I) x) j* g5 @
第7 章 润滑状态转化与薄膜润滑⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 200
7 \# s) x( z. d7 .1 弹流润滑研究展望⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 201
. W" {0 x% [! |( a% h: t5 ^7 .2 润滑状态转化⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 206
, f& i/ y# @' `2 v' [ [9 H$ `; z7 .3 薄膜润滑的特征⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 211
! B1 x( Z0 I/ [3 X( z7 .4 薄膜润滑数值分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2244 E. T6 ]7 r: o9 O& N
第8 章 润滑失效与混合润滑⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2304 g/ h4 p5 Y+ }- |' `0 \
8 .1 粗糙度及材料粘弹性对润滑失效的影响⋯⋯⋯⋯⋯⋯⋯⋯ 230* E( z3 p2 l* L; \+ @; x: @- N; t' j
8 .2 流体极限切应力对润滑失效的影响⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 236
+ Q) d+ O' w- e8 .3 温度效应对润滑失效的影响⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 242
; B/ k/ c0 n' v) Y- a3 }! H+ y9 `8 .4 混合润滑状态⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2469 p+ p" W. z8 I% t5 f. D! t
Ⅷ |