ADS如何实现?
最近两年出现了不少L2级自动驾驶系统,但绝大部分功能的开启都有严格的应用范围和限制条件,不仅在很多路况、交通状况下无法使用,也不能满足中国消费者以城市路况为主的通勤需求。
正是看到这一痛点,华为才决定研发ADS系统,直接来解决通勤问题。但通勤涉及到多种场景,尤其是城市路段,系统复杂度指数级上升。
▲ADS技术架构
硬件配置上,ADS方案会使用2~3个车规级100线混合固态的激光雷达,同时还有十几个摄像头和6个毫米波雷达,可谓是武装到了牙齿,配置丝毫不输L4级无人出租车。
计算中枢是名为ADCSC(Autonomous Driving Central Super Computer)的域控制器,算力充沛。
软件上,感知部分华为使用了多种AI技术,直接将自研的毫米波雷达和激光雷达生成的点云,以及摄像头视频画面进行像素级的融合(即前融合),保证了感知能力。
此前一些自动驾驶公司做前融合多为激光雷达和摄像头的融合,毫米波雷达则直将接输出的目标与前两者的感知结果融合。
华为拥有自主研发的毫米波雷达,因此可以拿到毫米波雷达最原始的点云数据,将三种传感器同时进行像素级前融合和结构化数据融合,在技术上更进了一步。
▲ADS使用的部分传感器
ADS要在城市内实现自动驾驶(L4级的功能,L2级的责任划分),也就是说要能够处理红绿灯、十字路口等各种场景,并躲避行人、自行车、三轮车、外卖小哥等各种交通参与者。
这意味着,传统L2级系统在决策部分使用的基于规则的算法无能为力,需要在决策部分引入AI技术。
华为在决策部分以规则为框架划定了不同的单元格,然后在每个格子内进一步引入了机器学习技术。
纯AI的算法不可控,只有将规则算法和AI技术融合才能兼顾效果与安全性。
当然,ADS方案里也有高等级自动驾驶必备的高精地图系统,这也是其能够实现全段通勤自动驾驶的关键。
面对复杂的物理世界场景,自动驾驶功能离不开高精地图,但使用高精度地图又会带来两个问题:没有地图数据的区域无法使用自动驾驶、高精地图数据难以实时更新从而影响自动驾驶系统。
对此,华为ADS自动驾驶团队已经有了一套解决办法。
首先,ADS的全段通勤功能会根据地图的覆盖情况,逐城开放给用户。比如优先开放一线城市,随后逐步覆盖二三线城市。
值得一提的是,华为自己也拥有甲级地图测绘资质和地图团队,本身就具备高精地图制作能力。同时,华为也打造了一个地图平台,希望和其他合作伙伴一起来加速制作高精地图
其次,在场景相对比较单一的高速(快速路)和停车场路况,无需高精地图即可使用ADS的功能,比如自动跟车/自动超车、AVP等功能。
这种设定最大程度的扩大了ADS的ODD——有高精地图的就用通勤自动驾驶功能,没有地图的地方也可以使用自动驾驶功能。
再次,车队学习功能可以帮助更新高精地图。
搭载ADS系统的车辆本身就拥有诸多传感器,在日常行驶时可用至少两台高线束激光雷达和摄像头来收集道路变化数据。
当ADS车辆越来越多,行驶里程越来越多的时候,就可以加快高精地图的更新频率。
▲ADS可自行生成周围地图
高精地图的底图制作仍需要专业的采集车来完成,ADS车辆仅负责变动部分数据的采集和更新。ADS车辆在行驶中还会自己建立一个路谱,在遇到实时感知的路况、高精地图、自建路谱的数据不一致时,会计算三者的置信度,从而决定车辆行为。
如果车辆遇到无法处理的极端情况,会先保持一定的路线行驶,同时呼叫驾驶员接管。
ADS的车队学习功能除了用于共享AVP和地图信息,另外一个关键用处是收集驾驶数据,从而用来训练感知和决策系统中的AI模型,最终提升系统表现。
特斯拉的Autopilot系统也有类似的设定,叫做影子模式。
在过去数年,特斯拉旗下车型销量突破百万台,Autopilot系统的行驶里程超过30亿英里(约合48亿公里)。车队收集到的数据不断给Autopilot系统的迭代提供“养料”,才造就了Autopilot当今最强L2的地位。
华为ADS的车队学习模式会收集多种数据传回云端,除了前文提及的道路环境信息,在驾驶员出现接管,或者出现不舒适运行(如急刹车)时,系统也会将相关数据传回云端用以改进。
自动驾驶车辆拥有诸多传感器,如果传回的数据太多、太大,都不方便实际操作。为了解决这一问题,ADS系统在收集到目标数据后,首先会在本地进行预处理,将其精简为结构化的数据,最后再做回传。
秘密研发7年团队
华为在2014年左右就开始秘密研发自动驾驶技术,团队规模从最开始的一两百人,急速膨胀到今天的2000多人。
华为与北汽新能源共同打造的极狐品牌,从今年四季度开始将推出一系列车型。相关车型车身上将标有HI LOGO,HI代表Huawei Inside。标有HI LOGO的车型,即搭载了华为高阶自动驾驶系统和全部华为智能汽车解决方案。