机械社区

 找回密码
 注册会员

QQ登录

只需一步,快速开始

搜索
查看: 2034|回复: 0

量子计算入门指南:它是如何工作的?现在怎样了?

[复制链接]
发表于 2019-11-8 11:01:48 | 显示全部楼层 |阅读模式
谷歌宣称已经实现“量子霸权”,IBM微软也在开发量子计算机,可以说量子计算已经成为当下炙手可热的前沿技术!到底什么是量子计算,介绍与说明很多,今天这篇文章只有2000字,但它简要介绍了量子计算机,想科普一下的同学可以读读。本文编译自medium原题为“Quantum Computing:An Introduction for Programmers”的文章。
2 I& I3 K5 t; J2 g0 V! i) E
解决复杂问题时,量子计算机并不比人强多少。量子计算机将复杂任务分解成许多简单任务,与人类相比,计算机处理简单任务时快很多,这就是计算机的优势所在。但经典计算机存在限制:任务必须按顺序出现。正因如此,如果任务太复杂,或者数据库太大,想找到解决方案就会耗费很长时间。许多时候问题太庞大,从数学层面看,即使是最强大的超级电脑也没有办法突破序列任务设定的障碍,但量子计算机可以,因为它有一些有趣的特征:叠加、纠缠和干涉。

/ e$ c4 {1 g, j, f. S& e, m0 F( z$ c
3 t2 n& z' j5 e9 y/ d6 `/ u
如何工作的

7 ?  t2 i) Z: U3 r0 |3 z" R% j
为了解释这种现象,我们回退一步。当计算机将复杂任务分解成简单小任务时,最简单的任务是什么?就是在两个选项之间选择,比如在A或者B、真或者假、头或者尾之间选择,这些都是二元问题。在计算机中,二进制代码(用1或者0代表)可以转化为计算机电路开关中的“开或者关”。虽然二进制解决方案(信息比特)能以惊人的速度交流信息,但读取时必须一个接一个读取。量子计算机的效率高很多。与比特等价的是量子比特,从本质上讲它相当于一个可以承载可测量信息的粒子。
) m( ?2 `( c% z' E) i5 n
比特必须以一种二元状态或者另一种状态存在,但量子比特可以以量子态(叠加)存在,它可以在同一时间以两种状态存在。量子力学从很大程度上说就是概率游戏,量子比特变成状态A或者B的概率可能是50/50,也可能是70/30、10/90或者其它比例。你可以这样想像:量子比特的位置位于AB之间,或者位于球面的某个位置,球的一端是A状态,另一端是B状态。不论怎样,因为量子有叠加特点,所以它可以同时在多个位置出现。为了找到问题的解决方案,量子比特一次可以沿多条路径前进,但比特一次只能选一条。

, k0 G" R1 V5 ^# n" l8 M3 z
/ A" i' q# B0 z6 {/ v
迪杰斯特拉算法(Dijkstra)可以帮我们找到抵达目的地效率最高的路径,量子比特没有必要一条一条路探索(经典计算机正是这样做的),它可以同时分析多条路径,以更快的速度找到最棒的路径。当问题越复杂,输入信息越庞大,经典计算机寻找路径的时间就会越长。量子计算不一样,它的效率高很多。
4 i2 l: E! b2 S2 A9 w# X4 o( i
想挖掘量子叠加的优势,时间很关键,因为量子比特与测量设备接触时叠加特性会受到影响。我们管这种物理法则叫作“观测者效应”。粒子虽然会同时表现出粒子和波的特点,但是当我们观测时只能记录其中一种。到底记录到其中的哪一种取决于观测。所以说,当我们想探知量子比特携带怎样的信息时,就会面临这样的障碍。
2 u2 L# U$ Y4 `

( }) ?" }4 A' F6 P, ^+ J. U' S% l( `
我们可以利用量子力学的第二个特点来克服 “观测者效应”,这个特点就是“纠缠”(entanglement)。物理家已经证实“纠缠”的存在,也就是两个粒子不管相隔多远,都能联系在一起。现在我们可以操纵几十个量子比特,让它们变成单一的纠缠状态,这样我们就能建立一个网络,它有2的n次方种可能性(n就是网络中量子比特的数量),它们可以协同工作。

4 H) J% L. B* B% x' b
如果量子比特携带相同的信息,如何处理?那就要谈谈量子干涉了,粒子具有波的特点,干涉是波的特征之一。当波峰与波峰相遇,波谷与波谷相遇,彼此互补,效果就会放大,这就是相长干涉。如果波峰与波谷相遇,就会抵消,这就是相消干涉。当超过一个量子比特处于相长干涉状态,它们的效果就会放大,这样就可以传输信息了。

7 B: M5 c. E0 L& D0 D
现在已经走到了哪一步

- f7 Y7 W- i, H2 V* j
要想让量子网络真正发挥潜能,还有一些障碍要跨越。虽然与经典计算机相比量子计算机解决问题的速度更快(也就是所谓的量子优势),但是即使是当今最大、最稳定的量子系统,在商业上还是没有实用价值。

! o0 w6 G6 g7 z" p7 J& {' |+ @/ m$ _

9 `- N6 A/ c& z/ A* q
实际上,往纠缠系统中添加量子比特是一件非常难的事,因为网络非常脆弱。1998年,IBM、牛津、加州伯克利大学、斯坦福、MIT成功将一对量子比特组合。20年后,谷歌刷新纪录,将量子比特数量增加到72个。

: O& c4 W8 r) G/ S  w7 e' W
虽然纠缠能从一定程度上解决“观察者效应”这一问题,但是量子状态还是容易被破坏,而且量子特征的持续时间也很有限。量子系统必须在退出叠加状态、进入退相干状态之前找到解决方案,否则就会失败。
" Q3 D6 F5 d0 D# ?0 O+ }
外部因素也会导致量子比特退出叠加状态,虽然我们可以增加量子比特的数量,但是量子比特越多,越容易受到外部因素的影响。现在行业一般会用激光器、磁场、超导体创建一个环境,延长量子状态的寿命(寿命一般用毫秒来计算),这样能降低“出错率”。
当出错率下降,观测系统也许能取得突破,我们可以根据观测开发更棒的量子算法。一些行业玩家已经允许客户通过云进入量子计算网络,这样就能让研发变得更容易。

( Z" {; f) ]* w5 q0 a
一旦我们可以建立足够庞大、足够稳定的量子比特网各,一旦出错率降得足够低,量子计算机解决经典问题时速度会更快,不只如此,它还可以解决经典计算机解决不了的问题。

2 M! B( ~# Z1 n
到了这一阶段就能实现“量子霸权”。也有人认为“量子霸权”不可能实现,因为受到了物理原则和理论的限制,量子计算不可能走到这一步。
5 w4 j4 U& e8 F# q4 A% }
1 e" {# p8 I* [8 {* N
有何可能性?

. {3 `" z) v5 G# u( b/ [
一旦“量子霸权”真正实现,量子计算可以在许多科研领域派上用场,用来解决复杂问题。在复杂而庞大的数据库上查询时,它的处理速度更快;到时机器学习将会突飞猛进;我们可以模拟更加复杂的分子结构,了解它们的行为,这样就可以在医学领域取得更多突破。
# u6 b( I/ ^+ D9 S. [
有了强大的模拟能力,对工业和科技产业也是好事。不过量子计算机无法取代经典计算机,它要与现代机器结合起来用。有了量子计算机,一些领域将会迎来变革。
6 B, w4 G8 U- U5 E2 F4 y
当AI、机器学习与量子计算结合,也许会有很大的突破。网络安全行业也会拥抱量子技术,因为即使是今天最棒的经典加密技术,在量子系统面前也不堪一击。

* a( S4 f, H) o
神译局  译者:小兵手
" l5 R0 G- h6 P( a5 {' D, C
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

小黑屋|手机版|Archiver|机械社区 ( 京ICP备10217105号-1,京ICP证050210号,浙公网安备33038202004372号 )

GMT+8, 2024-11-24 21:50 , Processed in 0.054287 second(s), 15 queries , Gzip On.

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表