|
楼主 |
发表于 2008-3-30 14:02:14
|
显示全部楼层
三、数控机床主要特征规格的选择
# r/ T7 f, p% o: N, i5 f# d) h' y$ w; R( ^ x! I3 l
机床特征规格应包括机型、机床规格参数和机床主电机功率等。在确定工艺内容的前提下,机型选择就较明确了。例如,回转体零件加工主要可供选择设备有车床、车削中心、数控磨床等;箱体的加工则应以立式或卧式加工中心为主。$ Y. z; I& _& |; W7 w1 s. a
+ d1 K G. i) j( r 数控机床已发展成品种繁多、可供广泛选择的商品,在机型选择中应在满足加工工艺要求的前提下越简单越好。例如,车削中心和数控车床都可以加工轴类零件,但一台满足同样加工规格的车削中心价格要比数控车床贵几倍,如果没有进一步工艺要求,选数控车床应是合理的。在加工型腔模具零件中,同规格的数控铣床和加工中心都能满足基本加工要求,但两种机床价格相差20%~50%,所以在模具加工中要采用常更换刀具的工艺可安排选用加工中心,而固定一把刀具长时间铣削的可选用数控铣床。
1 }8 U3 Y; i. W
8 q2 x- R8 l* ? v/ V! I1 f+ n 数控机床的最主要规格是几个数控轴的行程范围和主轴电机功率。机床的三个基本直线坐标(X、Y、Z)行程反映该机床允许的加工空间,在车床中两个坐标(X、Z)反映允许回转体的大小。一般情况下加工工件的轮廓尺寸应在机床的加工空间范围之内,例如,典型工件是450 mm ×450 mm ×450 mm的箱体,那么应选取工作台面尺寸为500mm×500 mm的加工中心。选用工作台面比典型工件稍大一些是出于安装夹具考虑的。机床工作台面尺寸和三个直线坐标行程都有一定的比例关系,如上述工作台(500 mm ×500 mm)的机床,x轴行程一般为(700~800)mm、y轴为(500~700)mm、z轴为(500~600)mm左右。因此,工作台面的大小基本上确定了加工空间的大小。个别情况下也允许工件尺寸大于坐标行程,这时必须要求零件上的加工区域处在行程范围之内,而且要考虑机床工作台的允许承载能力,以及工件是否与机床交换刀刀具的空间干涉、与机床防护罩等附件发生干涉等系列问题。
' s1 F2 Z$ K2 m& C
7 F- g8 ]1 e" A: J) j 数控机床的主电机功率在同类规格机床上也可以有各种不同的配置,一般情况下反映了该机床的切削刚性和主轴高速性能。例如,轻型机床比标准型机床主轴电机功率就可能小1~2级。目前一般加工中心主轴转速在(4000~8000)r/min,高速型机床立式机床可达(20000~70000)r/min,卧式机床(10000~20000)r/min,其主轴电机功率也成倍加大。主轴电机功率反映了机床的切削效率,从另一个侧面也反映了切削刚性和机床整体刚度。在现代中小型数控机床中,主轴箱的机械变速已较少采用,往往都采用功率较大的交流可调速电机直联主轴,甚至采用电主轴结构。这样的结构在低速中扭矩受到限制,即调速电机在低转速时输出功率下降,为了确保低速输出扭矩,就得采用大功率电机,所以同规格机床数控机床主轴电机比普通机床大好几倍。当使用单位的一些典型工件上有大量的低速加工时,也必须对选择机床的低速输出扭矩进行校核。轻型机床在价格上肯定便宜,要求用户根据自己的典型工件毛坯余量大小、切削能力(单位时间金属切除量)、要求达到的加工精度、实际能配置什么样刀具等因素综合选择机床。& N: I" V+ G- U0 R2 h1 h
6 R7 z' x. [. p1 E& F# K. i
近年来数控机床上高速化趋势发展很快,主轴从每分钟几千转到几万转,直线坐标快速移动速度从(10~20)m/min上升到80m/min以上,当然机床价格也相应上升,用户单位必须根据自己的技术能力和配套能力做出合理选择。例如,立式加工中心上主轴最高转速可达(50000~80000)r/min,除了一些加工特例以外,一般相配套的刀具就很昂贵。一些高速车床都可以达到(6000~8000)r/min以上,这时车刀的配置要求也很高。
B) E5 }; b+ E4 W$ T# l7 ]/ g4 V: v% x; o6 S1 }
对少量特殊工件仅靠三个直线坐标加工不能满足要求,要另外增加回转坐标(A、B、C)或附加工坐标(U、V、W)等,目前机床市场上这些要求都能满足,但机床价格会增长很多,尤其是对一些要求多轴联动加工要求,如四轴、五轴联动加工,必须对相应配套的编程软件、测量手段等有全面考虑和安排。
: \% f3 T, ^% N$ O1 I& ]2 V5 j, s2 j6 A0 U* S0 r6 v6 {+ V* T
四、机床精度的选择
% O# ]# w) J% D) N6 i# S6 V }0 l& k
5 z8 L0 Y4 L! @& b* D9 F 典型零件的关键部位加工精度要求决定了选择数控机床的精度等级。数控机床根据用途又分为简易型、全功能型、超精密型等,其能达到的精度也是各不一样的。简易型目前还用于一部分车床和铣床,其最小运动分辩率为0.01mm,运动精度和加工精度都在(0.03~0.05)mm以上。超精密型用于特殊加工,其精度可达0.001mm以下。这里主要讨论应用最多的全功能数控机床(以加工中心为主)。
0 ^0 A4 m: u3 `2 Z. @* G4 E6 N4 S) W5 B) Q2 Y# k3 ~
按精度可分为普通型和精密型,一般数控机床精度检验项目都有20~30项,但其最有特征项目是:单轴定位精度、单轴重复定位精度和两轴以上联动加工出试件的圆度,如表1所示。9 B3 r5 v _1 f+ V! n
, k2 K8 p2 `% o+ ]3 j3 y
其他精度项目与表1内容都有一定的对应关系。定位精度和重复定位精度综合反映了该轴各运动部件的综合精度。尤其是重复定位精度,它反映了该轴在行程内任意定位点的定位稳定性,这是衡量该轴能否稳定可靠工作的基本指标。目前数控系统中软件都有丰富的误差补偿功能,能对进给传动链上各环节系统误差进行稳定的补偿。例如,传动链各环节的间隙、弹性变形和接触刚度等变化因素,它们往往随着工作台的负载大小、移动距离长短、移动定位速度的快慢等反映出不同的瞬时运动量。在一些开环和半闭环进给伺服系统中,测量元件以后的机械驱动元件,受各种偶然因素影响,也有相当大的随机误差影响,如滚珠丝杠热伸长引起的工作台实际定位位置漂移等。总之,如果能选择,那么就选重复定位精度最好的设备! |
|