找回密码
 注册会员

QQ登录

只需一步,快速开始

搜索
查看: 8435|回复: 3

51單片机pin腳說明﹗

[复制链接]
发表于 2006-6-28 15:42:47 | 显示全部楼层 |阅读模式
) a p) P+ U$ q
& H, v" j z# A1 y# K % y) [- H4 o$ D1 Z! E2 A& f2 \2 v. j) z& i0 `) y6 |8 ^( ~9 y1 h
* i- O. E3 A+ R' o
 
6 i" i7 y& q, i% \) G0 c2 E

引脚功能:

# p% s( A: O) @3 u1 {) G

MCS-51是标准的40引脚双列直插式集成电路芯片,引脚分布请参照----单片机引脚图:

2 o2 g o4 r6 E/ ^

l P0.0~P0.7 P0口8位双向口线(在引脚的39~32号端子)。

3 B1 x& X: h$ d+ g3 k% C& W. p( T

l P1.0~P1.7 P1口8位双向口线(在引脚的1~8号端子)。

; x2 ~. k/ K& O5 _ S

l P2.0~P2.7 P2口8位双向口线(在引脚的21~28号端子)。

& E) M) Z! u0 i) k

l P3.0~P3.7 P2口8位双向口线(在引脚的10~17号端子)。

/ P% V' Q) ?% N) T

这4个I/O口具有不完全相同的功能,大家可得学好了,其它书本里虽然有,但写的太深,对于初学者来说很难理解的,我这里都是按我自已的表达方式来写的,相信你也能够理解的。

! `" ]5 k& G( P# E

P0口有三个功能:

# l9 a- h+ e( B

1、外部扩展存储器时,当做数据总线(如图1中的D0~D7为数据总线接口)

. P; l# j' C# ?7 ]% U7 A- s

2、外部扩展存储器时,当作地址总线(如图1中的A0~A7为地址总线接口)

, F! P1 \/ F2 l, P7 e( P6 d

3、不扩展时,可做一般的I/O使用,但内部无上拉电阻,作为输入或输出时应在外部接上拉电阻。

; w( W6 u/ g B9 i% W

P1口只做I/O口使用:其内部有上拉电阻。

& S& s4 Q% ~9 A; F7 m

P2口有两个功能:

/ D& |4 y8 r$ J

1、扩展外部存储器时,当作地址总线使用

# l d# L _5 s9 @9 G/ x: [/ }; o

2、做一般I/O口使用,其内部有上拉电阻;

9 E' ]( Y2 ~; B" a1 I" `/ J9 K' y

P3口有两个功能:

5 w$ v5 c. w+ r

除了作为I/O使用外(其内部有上拉电阻),还有一些特殊功能,由特殊寄存器来设置,具体功能请参考我们后面的引脚说明。

; T+ H8 p4 Z8 W% x

有内部EPROM的单片机芯片(例如8751),为写入程序需提供专门的编程脉冲和编程电源,这些信号也是由信号引脚的形式提供的,

* n; o6 b7 C6 W2 x

即:编程脉冲:30脚(ALE/PROG)

# I G1 B/ K) N( q1 u

编程电压(25V):31脚(EA/Vpp)

+ u) k2 M7 {2 O

接触过工业设备的兄弟可能会看到有些印刷线路板上会有一个电池,这个电池是干什么用的呢?这就是单片机的备用电源,当外接电源下降到下限值时,备用电源就会经第二功能的方式由第9脚(即RST/VPD)引入,以保护内部RAM中的信息不会丢失。

) n7 @1 d9 g1 j( V7 D7 n- f

(注:这些引脚的功能应用,除9脚的第二功能外,在“新动力2004版”学习套件中都有应用到。)

; g' H5 g4 p/ K3 T% W

在介绍这四个I/O口时提到了一个“上拉电阻”那么上拉电阻又是一个什么东东呢?他起什么作用呢?都说了是电阻那当然就是一个电阻啦,当作为输入时,上拉电阻将其电位拉高,若输入为低电平则可提供电流源;所以如果P0口如果作为输入时,处在高阻抗状态,只有外接一个上拉电阻才能有效。

0 B- Q$ b. q+ S, q# ~1 p& w# }$ ]

ALE 地址锁存控制信号:在系统扩展时,ALE用于控制把P0口的输出低8位地址送锁存器锁存起来,以实现低位地址和数据的隔离。参见图2(8051扩展2KB EEPROM电路,在图中ALE与4LS373锁存器的G相连接,当CPU对外部进行存取时,用以锁住地址的低位地址,即P0口输出。

* s4 i- W2 h/ ~$ H3 E; N

由于ALE是以晶振六分之一的固定频率输出的正脉冲,当系统中未使用外部存储器时,ALE脚也会有六分之一的固定频率输出,因此可作为外部时钟或外部定时脉冲使用。

: ]6 p8 t: ~8 H m' i

PSEN 外部程序存储器读选通信号:在读外部ROM时PSEN低电平有效,以实现外部ROM单元的读操作。

; \3 ^, E' L& c; v+ y% I9 g

1、内部ROM读取时,PSEN不动作;

3 W1 L n& [7 S: l# o9 R

2、外部ROM读取时,在每个机器周期会动作两次;

$ `6 C; V0 r3 R5 b/ {; ~7 u

3、外部RAM读取时,两个PSEN脉冲被跳过不会输出;

% M8 t8 } ]* G7 }

4、外接ROM时,与ROM的OE脚相接。

2 p9 Y9 b' A' b4 t% U8 O" g6 J

参见图2—(8051扩展2KB EEPROM电路,在图中PSEN与扩展ROM的OE脚相接)

, q! h5 U/ a# x& @) }4 ` @

EA/VPP 访问和序存储器控制信号

7 d# |% _$ D$ ^( E+ Y# V

1、接高电平时:

' n. b! Z3 Q9 {. H% o

CPU读取内部程序存储器(ROM)

0 d. ?5 [2 i. @. g. |% i9 E& V

扩展外部ROM:当读取内部程序存储器超过0FFFH(8051)1FFFH(8052)时自动读取外部ROM。

2 A' N; x* m5 z B3 J- J

2、接低电平时:CPU读取外部程序存储器(ROM)。

: T) o$ h* p* d; H, v2 [

3、8751烧写内部EPROM时,利用此脚输入21V的烧写电压。

/ m% y i1 {# ~) M& o

RST 复位信号:当输入的信号连续2个机器周期以上高电平时即为有效,用以完成单片机的复位初始化操作。

3 g, q b" Q1 ]8 w0 Q7 |2 e

XTAL1和XTAL2 外接晶振引脚。当使用芯片内部时钟时,此二引脚用于外接石英晶体和微调电容;当使用外部时钟时,用于接外部时钟脉冲信号。

VCC:电源+5V输入

+ B# J& J1 Y6 l

VSS:GND接地。

0 h% m2 \% P$ S% G( F) G$ o, m

各端口工作原理讲解

( P/ H' }' y( y: n7 E

并行端口

/ G, Z. h7 a2 C5 g

P0端口

2 \8 ~$ _4 o: `, p, z* Q/ B+ q

总线I/O端口,双向,三态,数据地址分时复用,该端口除用于数据的输入/输出外,在8031单片机外接程序存储器时,还分时地输出/输入地址/指令。由Po端口输出的信号无锁存,输入的信息有读端口引脚和读端口锁存器之分。P0端口8位中的一位结构图见下图:

. R4 j, ?" e; ^

 

1 |7 g+ g6 B) S+ V+ A

8 b' i3 \5 P% @: K' I3 n! ]. K" A# d


由上图可见,P0端口由锁存器、输入缓冲器、切换开关与相应控制电路、场效应管驱动电路构成。
在输出状态下,当切换开关MUX向下时,从内部总线来的数据经锁存器反相和场效应管T2反相,输出到端口引脚线上。此时,场效应管T1关断,因而这种输出方式应为外接上拉电阻的漏极开路式。当切换开关MUX向上时,一位地址/数据信号分时地输出到端口线上。此外,由T1、T2的通断组合,形成高电平、低电平与高阻浮动三态的输出。
在输入状态下,从锁存器和从引脚上读来的信号一般是一致的,但也有例外。例如,当从内部总线输出低电平后,锁存器Q=0,Q=1,场效应管T2开通,端口线呈低电平状态。此时无论端口线上外接的信号是低电乎还是高电平,从引脚读入单片机的信号都是低电平,因而不能正确地读入端口引脚上的信号。又如,当从内部总线输出高电平后,锁存器Q=1,Q=0,场效应管T2截止。如外接引脚信号为低电平,从引脚上读入的信号就与从锁存器读入的信号不同。为此,8031单片机在对端口P0一P3的输入操作上,有如下约定:为此,8031单片机在对端口P0一P3的输入操作上,有如下约定:凡属于读-修改-写方式的指令,从锁存器读入信号,其它指令则从端口引脚线上读入信号。
读-修改-写指令的特点是,从端口输入(读)信号,在单片机内加以运算(修改)后,再输出(写)到该端口上。下面是几条读--修改-写指令的例子。

: I; O3 U$ `# N, @6 F9 c9 p6 h0 H& s. O7 m, e, ]# ?; G) \ }+ U& m& B. q# H9 U! I- M6 a% ?3 `& L6 {0 }9 _% v; q, _9 e. T4 T& e6 ] n7 U: M3 \1 o0 m. D: y& U- T7 L8 |3 R/ Z2 `) u9 G" Q( |- U1 u% [2 C( w: X% N' M, H' E$ I# @% t( a" k: q4 S: D& P/ b$ X l7 C9 d6 @# ^) R4 Y9 _; \8 S) [% t) D+ }9 ?" \* K# }& D3 x% D% ?1 E) e9 F+ {' G; r. C/ H3 x1 A+ r6 Y1 U, F# j% L0 e. q% H. M) \% n" `3 ~+ r3 Z* O* e& [ t/ {' t/ s. `4 }. j$ Q8 x, G/ q S
ANL P0,#立即数 0→立即数P0
ORL P0,A 0→AP0
INC P1 1+1→P1
DEC P3 ;P3-1→P3
CPL P2 ;P2→P2
0 V3 E" t+ }( n% D5 {

这样安排的原因在于读-修改-写指令需要得到端口原输出的状态,修改后再输出,读锁存器而不是读引脚,可以避免因外部电路的原因而使原端口的状态被读错。
P0端口是8031单片机的总线口,分时出现数据D7一D0、低8位地址A7一AO,以及三态,用来接口存储器、外部电路与外部设备。P0端口是使用最广泛的I/O端口。

$ @: |7 v3 c# |" O) M( t

P1端口:

# r' C) n$ a% d8 X4 E. o

通用I/0端口,准双向静态口。输出的信息有锁存,输入有读引脚和读锁存器之分。P1端口的一位结构见下图. 由图可见,P1端口与P0端口的主要差别在于,P1端口用内部上拉电阻R代替了P0端口的场效应管T1,并且输出的信息仅来自内部总线。由内部总线输出的数据经锁存器反相和场效应管反相后,锁存在端口线上,所以,P1端口是具有输出锁存的静态口。
由下图可见,要正确地从引脚上读入外部信息,必须先使场效应管关断,以便由外部输入的信息确定引脚的状态。为此,在作引脚读入前,必须先对该端口写入l。具有这种操作特点的输入/输出端口,称为准双向I/O口。8031单片机的P1、P2、P3都是准双向口。P0端口由于输出有三态功能,输入前,端口线已处于高阻态,无需先写入l后再作读操作。

4 f( r* |$ u. G8 H$ m# Y

/ R$ p2 C( K! X, l( f# }: Y0 W


单片机复位后,各个端口已自动地被写入了1,此时,可直接作输入操作。如果在应用端口的过程中,已向P1一P3端口线输出过0,则再要输入时,必须先写1后再读引脚,才能得到正确的信息。此外,随输入指令的不同,H端口也有读锁存器与读引脚之分。
Pl端口是803l单片机中唯一仅有的单功能I/O端口,并且没有特定的专用功能,输出信号锁存在引脚上,故又称为通用静态口。

4 O0 ~% V% [- k: U$ N- h& A

P2端口:
P2端口的一位结构见下图:

9 I: w, p8 U9 k4 q: T

# ?/ [/ r" ]0 ^) `' `" d

由图可见,P2端口在片内既有上拉电阻,又有切换开关MUX,所以P2端口在功能上兼有P0端口和P1端口的特点。这主要表现在输出功能上,当切换开关MUX向左时,从内部总线输出的一位数据经反相器和场效应管反相后,输出在端口引脚线上;当MUX向右时,输出的一位地址信号也经反相器和场效应管反相后,输出在端口引脚线上。
由于8031单片机必须外接程序存储器才能构成应用电路,而P2端口就是用来周期性地输出从外存中取指令的地址(高8位地址),因此,P2端口的切换开关MUX总是在进行切换,分时地输出从内部总线来的数据和从地址信号线上来的地址。因此P2端口是动态的I/O端口。输出数据虽被锁存,但不是稳定地出现在端口线上。其实,这里输出的数据往往也是一种地址,只不过是外部RAM的高8位地址。
在输入功能方面,P2端口与P0和H端口相同,有读引脚和读锁存器之分,并且P2端口也是准双向口。
可见,P2端口的主要特点包括:
①不能输出静态的数据;
②自身输出外部程序存储器的高8位地址;
②执行MOVX指令时,还输出外部RAM的高位地址,故称P2端口为动态地址端口。
 
P3端口:
双功能静态I/O口P3端口的一位结构见下图。
 

) } b7 x/ ?' |5 }

由上图可见,P3端口和Pl端口的结构相似,区别仅在于P3端口的各端口线有两种功能选择。当处于第一功能时,第二输出功能线为1,此时,内部总线信号经锁存器和场效应管输入/输出,其作用与P1端口作用相同,也是静态准双向I/O端口。当处于第二功能时,锁存器输出1,通过第二输出功能线输出特定的内含信号,在输入方面,即可以通过缓冲器读入引脚信号,还可以通过替代输入功能读入片内的特定第二功能信号。由于输出信号锁存并且有双重功能,故P3端口为静态双功能端口。

$ z# T2 c: _4 m( y

P3口的特殊功能(即第二功能):

; D( m$ l _: T$ z* O5 c6 ?- `* z3 Y; r; s7 Z1 I; L4 {- Z& W; q \- I: m. W6 U7 M4 v* B9 y/ E3 J" P. j- x+ T* ?) v( J9 i) k2 a) X! u' T \ L& `5 k: X0 }( M) m- x* @6 P: ]; L) } x% g- X0 p$ z9 Y( p) E0 o+ Q G1 `$ N; [6 y: X+ v& z9 H, l, H0 y5 b# b# g! I' c) _) F1 U. d: D! _- L2 x8 N0 p8 U/ q5 W7 N& p! l% a$ `3 H! ]! W2 g1 l1 m6 _# O* `" W3 r( h4 e1 H# j$ g. g7 o3 G5 S7 ^( b8 B7 p: t8 `) w( `6 s: \+ X6 x( s* n( `/ v1 W" ^) x' | t" I# H) }8 p# s" y, t1 j% h0 }$ ^$ P# s! m! w* K8 O; w8 _: Q. R2 e5 G+ w9 f' R( S$ |; J. s7 B/ y$ s1 y4 ]" |8 K* A+ t1 y. T$ m' `0 y/ t5 w* L( k/ X% ], d, B6 V$ y* W* n# |) n g9 W% Z5 O5 o& S4 }! p9 H: [- `+ J; G9 x. O) T, e! h% S& t+ _' @' @) \/ ~% K& v' e k8 Z1 A0 O; C* s- U, _5 C: ]! E# v5 D8 P1 z: c' Z( s' @! A9 ]6 _: V. `9 F8 z4 y9 r6 C. a2 B9 K6 I9 |2 v9 {: e+ y/ D) v0 P) E& ? N) H/ ]/ t3 _" G- m5 A( c/ m5 s2 y% Y6 p+ V1 p0 F! n: r, I% W7 [/ W/ { i% e1 O! r
( d; S1 p& r/ {, j
口线
9 P+ A: b* O( ?1 V- l1 h. L
第二功能
% h6 P6 u [& p1 g
信号名称
7 S* A) ~ d" ^, \# v; ?7 {4 n
P3.0
RXD 串行数据接收
2 b: l- M, G% n/ W: U
P3.1
TXD 串行数据发送
" i) W- B; D4 L
P3.2
INT0 外部中断0申请
w, x6 C( E# z0 Z, b
P3.3
INT1 外部中断1申请
% e4 `$ D. D: X0 F
P3.4
T0 定时器/计数器0计数输入
$ d) `4 u3 G8 l8 N' F% p
P3.5
T1 定时器/计数器1计数输入
7 \ P) D# O5 [8 M: W' t
P3.6
WR 外部RAM写选通
/ Q+ K4 q0 Q+ E+ P
P3.7
RD 外部RAM读选通
: Q( I9 o" R" N

使P3端品各线处于第二功能的条件是:

, c d* U6 X: E# w) o

1\串行I/O处于运行状态(RXD,TXD);

* \8 S+ Q3 l. v+ Z; }" a

2\打开了处部中断(INT0,INT1);

; O! U' [$ l" N8 l

3\定时器/计数器处于外部计数状态(T0,T1)

- M8 q# |& T! ~% S. t" p

4\执行读写外部RAM的指令(RD,WR)

4 s) E0 J8 _" P3 S

在应用中,如不设定P3端口各位的第二功能(WR,RD信叼的产生不用设置),则P3端口线自动处于第一功能状态,也就是静态I/O端口的工作状态。在更多的场合是根据应用的需要,把几条端口线设置为第二功能,而另外几条端口线处于第一功能运行状态。在这种情况下,不宜对P3端口作字节操作,需采用位操作的形式。

) I$ Z- Z+ e4 B4 T

端口的负载能力和输入/输出操作:

, J# [* ~) ?4 o% w8 B- b

P0端口能驱动8个LSTTL负载。如需增加负载能力,可在P0总线上增加总线驱动器。P1,P2,P3端口各能驱动4个LSTTL负载。
前已述及,由于P0-P3端口已映射成特殊功能寄存器中的P0一P3端口寄存器,所以对这些端口寄存器的读/写就实现了信息从相应端口的输入/输出。例如:
MOV A, P1 ;把Pl端口线上的信息输入到A
MoV P1, A ;把A的内容由P1端口输出
MOV P3, #0FFH ;使P3端口线各位置l

7 A `* o7 Y/ l3 Z) p+ e

串行端口:
MCS-51系列单片机片内有一个串行I/O端口,通过引脚RXD(P3.0)和TXD(P3.1)可与外设电路进行全双工的串行异步通信。

: V' h0 m y, z+ @

1.串行端口的基本特点
8031单片机的串行端口有4种基本工作方式,通过编程设置,可以使其工作在任一方式,以满足不同应用场合的需要。其中,方式0主要用于外接移位寄存器,以扩展单片机的I/O电路;方式1多用于双机之间或与外设电路的通信;方式2,3除有方式l的功能外,还可用作多机通信,以构成分布式多微机系统。
串行端口有两个控制寄存器,用来设置工作方式、发送或接收的状态、特征位、数据传送的波特率(每秒传送的位数)以及作为中断标志等。
串行端口有一个数据寄存器SBUF(在特殊功能寄存器中的字节地址为99H),该寄存器为发送和接收所共同。发送时,只写不读;接收时,只读不写。在一定条件下,向阳UF写入数据就启动了发送过程;读SBUf就启动了接收过程。
串行通信的波特率可以程控设定。在不同工作方式中,由时钟振荡频率的分频值或由定时器Tl的定时溢出时间确定,使用十分方便灵活。

e' S0 u: t3 I0 g3 K

2.串行端口的工作方式
①方式0
8位移位寄存器输入/输出方式。多用于外接移位寄存器以扩展I/O端口。波特率固定为fosc/12。其中,fosc为时钟频率。
在方式0中,串行端口作为输出时,只要向串行缓冲器SBUF写入一字节数据后,串行端口就把此8位数据以等的波特率,从RXD引脚逐位输出(从低位到高位);此时,TXD输出频率为fosc/12的同步移位脉冲。数据发送前,仅管不使用中断,中断标志TI还必须清零,8位数据发送完后,TI自动置1。如要再发送,必须用软件将TI清零。
串行端口作为输入时,RXD为数据输入端,TXD仍为同步信号输出端,输出频率为fosc/12的同步移位脉冲,使外部数据逐位移入RxD。当接收到8位数据(一帧)后,中断标志RI自动置。如果再接收,必须用软件先将RI清零。
串行方式0发送和接收的时序过程见下图。
②方式1

0 H9 A7 P, W+ F" b

, w' l, J. |3 F A

10位异步通信方式。其中,1个起始位(0),8个数据位(由低位到高位)和1个停止位(1)。波特率由定时器T1的溢出率和SMOD位的状态确定。
一条写SBUF指令就可启动数据发送过程。在发送移位时钟(由波特率确定)的同步下,从TxD先送出起始位,然后是8位数据位,最后是停止位。这样的一帧10位数据发送完后,中断标志TI置位。
在允许接收的条件下(REN=1),当RXD出现由1到O的负跳变时,即被当成是串行发送来的一帧数据的起始位,从而启动一次接收过程。当8位数据接收完,并检测到高电乎停止位后,即把接收到的8位数据装入SBUF,置位RI,一帧数据的接收过程就完成了。
方式1的数据传送波特率可以编程设置,使用范围宽,其计算式为:
波特率=2SMOD/32×(定时器T1的溢出率)
其中,SMOD是控制寄存器PCON中的一位程控位,其取值有0和l两种状态。显然,当SMOD=0时,波特率=1/32(定时器Tl溢出率),而当SMOD=1时,波特率=1/16(定时器T1溢出率)。所谓定时器的溢出率,就是指定时器一秒钟内的溢出次数。波特率的算法,以及要求一定波特率时定时器定时初值的求法,后面将详细讨论。 ·
串行方式1的发送和接收过程的时序见下图。
③方式2,3
11位异步通信方式。其中,1个起始位(0),8个数据位(由低位到高位),1个附加的第9位和1个停止住(1)。方式2和方式3除波特率不同外,其它性能完全相同。方式2,3的发送、接收时序见下图。
由图可见,方式2和方式3与方式l的操作过程基本相同,主要差别在于方式2,3有第9位数据。

$ r, D. S* e' [" ]8 e% ^

 

9 r+ L; H& B3 A1 Z


发送时,发送机的这第9位数据来自该机SCON中的TB8,而接收机将接收到的这第9位数据送入本机SCON中的RB8。这个第9位数据通常用作数据的奇偶检验位,或在多机通信中作为地址/数据的特征位。
方式2和方式3的波特率计算式如下:
方式2的波特率=2SMOD/64×fosc
方式3的波特率=2SMOD/32×定时器T1的溢出率
由此可见,在晶振时钟频率一定的条件下,方式2只有两种波特率,而方式3可通过编程设置成多种波特率,这正是这两种方式的差别所在。
3.串行端口的控制寄存器
串行端口共有2个控制寄存器SCON和PCON,用以设置串行端口的工作方式、接收/发送的运行状态、接收/发送数据的特征、波特率的大小,以及作为运行的中断标志等。

; N2 G; ]( w/ _1 {* t

5 ^3 t0 W' q6 z+ N

) U1 q5 U% \% }0 H7 R6 P


 

& K$ | a! K0 X- f, @

 

2 l: f- e3 N& k* A' D9 B' X
 
回复

使用道具 举报

发表于 2006-9-16 20:13:23 | 显示全部楼层

Re: 51單片机pin腳說明﹗

看不到图片,楼主可否重新发一下
发表于 2007-2-5 14:14:05 | 显示全部楼层

Re: 51單片机pin腳說明﹗

我这里都有的,呵或& |! @2 I; ^% D5 O9 t1 D; ^* D
发表于 2007-2-5 18:43:17 | 显示全部楼层

Re: 51單片机pin腳說明﹗

我这也看不到图片,不过我从文字部份已经知道了:)- r! b9 v6 t+ ?: i. ~7 Y" r' ?* V9 C
都是51的最基础的知识,呵呵~~~
您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

Archiver|手机版|小黑屋|机械社区 ( 京ICP备10217105号-1,京ICP证050210号,浙公网安备33038202004372号 )

GMT+8, 2025-9-19 04:29 , Processed in 0.072917 second(s), 14 queries , Gzip On.

Powered by Discuz! X3.5 Licensed

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表