主体结构设计方案 & x8 b& X( e, {. v5 j+ T5 J" b
该机械手的工作空间很窄,仅为700 mm,所以要求机械手结构要紧凑,外形尺寸要小,但不要小到影响机械手的抓取能力。根据该机械手的工作环境及各坐标形式的优缺点,因此考虑采用折叠式关节型的设计方案。 其中2 处和3 处的铰接,1 处和2 处铰接小臂须有2 个自由度。 驱动方式的选择
4 o+ v# d1 _' u$ F该机器人一共有4 个独立的转动关节,连同末端机械手的运动,总计需要5 个动力源。常用的驱动方式为气压驱动、电机驱动和液压驱动3 种类型。基于这3 种驱动方式的优、缺点和机器人驱动系统的设计要求,选用直流伺服电机驱动的方式对机器人进行驱动。 自由度的分配 8 E6 `: `1 d, \/ W3 r9 |/ k$ H
人的手臂有肩、肘、腕3 个关节,共6 个自由度。机械手的设计以模仿人的手臂为基础,再根据实际情况,由于运载小车和爬臂机器人均可在自身所在的区域内移动和转动,所以大臂和腕部各有一摆动自由度,而小臂有2 个自由度,即摆动和有限的转动,且小臂可转回到大臂的空隙,工作时可展开。最后一个自由度就是手腕的摆动。
; f& K' Z4 f4 H$ c. |* f手部设计 $ w3 v p7 _/ Z4 \" d& @
因为被握持工件的形状、大小、材料性能、重量和表面情况等的不同,从而机械手的手部结构也多种多样, 手部结构是根据特定的工件要求而定的。常用的手部分为吸附和夹持两大类。根据设计要求,采用夹持式的手部结构,它对抓取各种形状的工件具有较强的适应性。
3 \0 C' p3 ?" ~9 F6 ^2 t该设计手爪的动力由电机提供,通过将丝杠与电机相连, 利用手爪的特有结构来实现手爪的开合。本文设计出2 种机械手手爪。 腕部设计 % c4 j; U( a( O
腕部的作用是在臂部动作的基础上进行调整或改变手部的方位, 从而扩大机械手的运动范围,使得机械手变得更加灵巧,适应性更强。腕部具有独立的自由度,要求有绕中轴的摆动运动。机械手的工作条件是用于检查核储罐焊缝,在腐蚀性的场合中工作,所以对机械手的腕部材料选用耐腐蚀不锈钢316L。 臂部设计
J: _ R8 V& Y$ a臂部的作用是把手部送到空间运动范围内任意位置。若改变手部姿态,可用腕部的自由度加以实现。因此,臂部必须具备3 个自由度才能满足基本要求,即手臂伸缩、左右回转和升降运动。 5 z6 T) x% W7 v6 e
臂部的结构设计必须根据机器人的运动形式、抓取质量、动作自由度、运动精度等因素来确定。同时设计时必须考虑到手臂的受力情况,油缸及导向装置的布置、内部管路与手腕的连接形式等因素。臂部运动速度越高,惯性力引起的定位前的冲击也就越大,运动既不平稳,定位精度也不高。因此,在臂部设计时除了要求结构紧凑、重量轻外,同时采用一定形式的缓冲措施。 * g* {6 J& b8 `$ l
自由度的分配在总体方案中已经介绍过,本文有4 个自由度,其中大、小臂的摆动,小臂的转动,都是通过电机驱动来实现。 大、小臂的摆动靠摆动油缸来实现,而小臂部分利用电机轴带动与其配合的板转动来实现其转动。 $ d* ?9 N" _6 u& ?0 ]
小臂的结构主要由2 块板、细轴组合而成,利用SolidWorks 建模后,其三维模型其三维模型如图5 所示。 机械手的建模 0 T; Q- B8 R; I0 }
本机械手的夹持对象是矩形焊缝检测仪,所以设计的机械手手爪应适合夹持矩形且夹持可靠。应用SolidWorks 软件对机械手的所有的零件建完模型后, 再在SolidWorks 的装配环境下进行装配,最终完成机械手的完整模型的装配, 建模结果如图6所示。 # y4 H- v( G. m# F* Z+ V( h
3 M" G4 Q* U; B) S$ [机械手的运动仿真 : M5 J( X0 E. S; Y
- s( `# h$ f# f: e6 s
运动仿真是生产制造前的一种检查过程和方法,为了达到高效和有力地生产,所以运动仿真是设计制造前的重要操作环节。对产品进行运动仿真,能够生动形象地进行产品的运动模拟,使产品的工作原理清楚地表达出来。 ) d2 m+ z0 x2 G
机械手的仿真过程,这里不再赘述。仿真后机械手实现预期的结果,机械手运动起来,达到了仿真的目的,如图7 所示。
- }, f) r. m$ q0 |3 V" R$ c* Q8 [" o, Z9 j1 ~
3 h. z2 x7 _* L. p* k
|