) R5 H( r. i! ] y' w0 {( `
3 Z- N4 a: d q两轮的打滑趋势预判。 力矩M的存在,会使滚筒之间产生压力,而且会使滚筒E与地面之间的 压力减小(有浮起的趋势),与之相反的是,滚筒F因故与地面的压力增加 从而更难(被D点的摩擦力)驱动。外力矩M逐渐增大,滚筒E最终先开始打滑。
4 G- E- U2 j7 V- N1 ^先分析E滚轮,打滑时: 重力G=50*9.81=490.5牛 滚筒E水平方向上NDE的大小与fCE平衡,即:NDE=fCE= NCE *uC=0.5 NCE 滚筒E垂直方向上NCE与fDE相以及G平衡,即:G= fDE+ NCE= NDE *uD+ NCE=0.6*0.5 NCE+ NCE=1.3 NCE ∴NCE= G/1.3=377.31 于是NDE=0.5 NCE=188.65 力矩M此时与fCE以及fDE产生的摩擦力矩平衡,即: M=(0.5 NCE +0.3 NCE)*0.3= =90.6牛米 和答案相同,本来可以交差了,然答案里把所有点的受力都给出了,于是企图乘胜追击。。。
9 |& t# L& s- d$ y. a; D' ?) c/ g' \滚筒E赋予F滚筒向下的摩擦fDF = fDE= 0.6NDF=0.6NDE=0.3G/1.3=113.192 滚筒F水平方向上NAF、fBF、NDF平衡,即:NAF+ fBF=NDF=NDE =188.65------① 滚筒F垂直方向上fAF、NBF、fDF、G平衡,即:G+fAF+fDF=NBF ----------------② 滚筒F上的力矩平衡: 对滚筒F圆心,则fAF+ fBF =fDF -----------------------------------------------③ 对滚筒F的B点,则NAF+ fDF = NDF + fAF-------------------------------------④ 呃。。。④刚好等效于①+③,于是乎,四个未知数,三个方程。。。Orz 8 Y4 q% o C# G% B" U- R* e2 d
得再找个借口。假设(仅仅是假设)滚筒F在AB点的静摩擦力的分配与压力 大小成比例分配。NBF/NAF= fBF/fAF-----------------------------------------------⑤ 解得: NAF =89.82477 fAF=14.36331 NBF =618.0555 fBF =98.82888
8 U0 \ P3 H$ o7 _2 [9 V此时fAF /NAF=fBF/ NBF=0.1599 小于墙壁地面摩擦系数0.5 因此滚筒F的确没有动。。。 5 v7 k( }# c# h2 k4 D9 o
和答案不一样 !!!!!!
- A% ^- ^6 n# n2 ]7 W; U$ J#¥^&$(!~#¥#¥^&$(!~^&$(!~ 没事干嘛放俩滚筒~~~
, Y$ a+ K2 K+ Q5 w3 v3 U$ w4 l- Q" q$ P. i- W7 q
2 p) U1 b3 j, m/ N
# i |' o Z3 D6 d6 b2 u7 C1 ^% n
9 S3 u7 B) J3 ?5 {! L) c
) z2 c% T. l1 p1 S4 a2 e: ~ h/ i |