无忧008 发表于 2012-7-16 18:25:07

UG一步可成性分析教程视频版和图片版

发不链接也发不了附件,只有上个图了。:image/png;base64,iVBORw0KGgoAAAANSUhEUgAAAGcAAABZCAIAAACsU61zAAAYeElEQVR4nO2ceVAT2b7Hral6975X9eq+uvXq1rtXZU3YEYEgILKnExBkR2QJe1gMIIo6iDAi6qCIIiCIKLIMuxs7KkjYIZCFJiQQlgABRL09hRsSh9HJ+yOAISRNCHhXvvWt5vSvT5/8+NT5ne4OCTt4y/r5NYu3LTESgrND3IFtCWqbmjTapiaNtqlJo21q0mibmjTapiaN4Kgdc37x0nPHi8PfytOu38ocly32p7SQt4PkT1mR4zjls2k/w1Hjvt654P9dsbvde68dyTL/9d7vP6v0fv/ea8d7rx2/9tV+/sT9gP+fZ3GnaEW5PB7vvdeO+UjZ97jvPn9aGC7Jeo/77pkP+r3Xjl+HO9pvXPlUFDXh+B2Px5uP1uR3/qb+4L7FXjhv9W6wl5tgP4X7k+vxl3DUphNdX15xeZX4z+fZhG/o6VgXOGqstEBinFP9AIdGrOJwOBwOp2eYw+FwBjgiVPc1OsT/USOiH1tof5DaxG80VlStPkJfe3LWhRzB3eKn3RzOiKhctl51dXXzHz68fvVy/sOH3NxcOGrV1dVj2xobGxsbo9Foi4uLXV2dCwsLi4uLcNRG/glFIpH+Bq8CR43JZOLsM50qSi5lVFy5cuVpXgyTyeR9XBhvqmAyme1cnn4Nhslk8ni86uwYJpPJZDLv5NxjMpl3b9+qr61hMplZ+QWZubn8Q+FYbB+NxmQy20pKmMv6+eefP32cfVA5yGQy0zPvXrhxl8lk9pGfc8dbmUxmhb/TSs9Es70D9RW8T4v3Ei8wmcyZ7pYzp+v4hxgMJpPJTA15yKCDXV1dvIljnz9/HgD7mExmR1tbaWkpc40sw64/s9Zqvn+fv9veTVrbB0Zw1EAQvEprvFruCwqIN0LnfVoEQfAIe06lggqCoBtWL+f8URAEyWRyxYMHIAiSuruzs26BIHgxPSsz8+bKuVQqdWkQHo/fmJ2dXWC03rzTCoJg+s2MC0l3QBB8QW9Juf4jCIId7W0hgf78nkQikV6cTe0i3Tx3FgRBsvfv+PHaEJex874gCPJq8n8+JN/R0QHG+lYb7O4jk0EQbG1tHR0dFcy/oKBgqDwNBMF7Lb2pNU384MP6VnAjgqPW9O8nimRa/9lgfn7+118W+e0vv/F+XVxc6fP508KrV69oa0ShUHpIJH47NTV1bYd/dm3qiWqelD43N8da1oMHhSwWq6P+IbGxkcVi9fT0sFgsxsAA619OcNS6tiVGcNSGhoaGhoaCgoLa29vdTPSEPD//4d27t0P/loKjVlJSWlJSOjrCamluNtmjIuTREdboCAuC1Rgx61/ScNQqKysrKyvv3bsHQdCOP/4RgiDEn+3Ge2oWFt5XgtPhpeNvP3x4ROxlNlYuLHxcawiCxpqzpbO1FfYkwQcAABfHQwAA2By0io7ws8Ji7A8dRKPRAACE+Lk7HLJxtLcFAMD2oNUfT1SNNWcDAGBthT1kYw0AAAAA/KEAAFDzirPEWqvhzuk7BlhgDzocslHDnZPHp2IxGIXA1P/+/vmfw36SC0pnPMvQ8IxR8k3cb+cpG5Tx57BCQ3ucis8FNBotlJ6k1Jbmzuiw5IYgiN1yZ7XvCmzXxr82kP5J/3v8kTnW5vexpN2hd5V8E8Pxnk72tmg0WtU7/k/Hyv5w+pm2W6SptcN+Oy9j28PGtof1nINMrOztbA9aotF73E/9Lq6X3XJnrDm7Pv+ivqP/SYKPss9FAAB2h2Srep+XC8owOuS+8+g9c6zN8RCcJcbaAmNtZ3twJyHP293J5KCTulesj4fzH049RQOYNdnekZTau7dvN2oIgtitOVtuS4w1tTZd6tMZz27dTjrFb4PEHOPCwmPBOHZrDqUmvTTzB3ZrzjAx+2H2+bGWu+zWnOvxESIHkZRamo212X+EdJWen56a9PBwn56aXNcQBLHbcv9hrZuRYVJfb97SYt7SstFz4ah1dnWxWKzm5mYIgvjBB72ZPIkFQRC7PY/dni+Vv574bpb1bpa1HMkTOspuz1v22sjaU5a2BkVFZo2NfGTmLS2ihl071FfDUcutqbHMz3d2doEg6LfffuPHS6o7qguSwqPjK4Ze4/F4dksxHLWOn5ZdINAWjBSIiSxtH9w+V5IRU5Jxtjr3ArujYE3/gtVBoYjordHjx/tjYlaQLYETTk9otFWGfVeSxfL9+DEkJASCoE+fPnG5XC6XW5zT/e4d98PbOe56giBovLPwH8p7k5ONa2uFePGNMjCQfBw4agwGg8FgNDY+hyCooKCAz+LlS966vASoFY93rXbnmt21EaFunQI9O0VFOsVEVntvSorJ06cikfEtySB8w1H767IgCOro6ODxeHQ6PaW8Y5JS97DuOY83e7+8dG6R93aiR1yFjneV/oPYoKTEVGAhE+mLZwgSjgZH7do1+go1fpDPTkJBEDTeXTbeXT7eXbbs8tURmIa4U1ZFfCvLA5vqzYhE87Y2vs2IxMDmp0KD6NnZ6bu4wPDSd3FZ87pwXmeu9fZOsNlsCIL4Rff582cul4tAIMbHx7lcbmvBg+7eYUZz1wtmh8gKnSDd/xY+UFVl2d0N0Gj7AAA7MCDS+wAAaG5G9/Ya19VZtLVZdnVZdnVZdnZatLWZVVUJIpMiAUkr9PXr169fv56ann4tsSAImuh5uLU+XZxt1tSEoVL3YTDieAnjw2CAnh4zItGivR3d04Pu7UWTSBZtbXxkRvsNBcenPM2TJI11rqFC92t8aWlp8RuLv/EIJ9J6cm/OjBLHaA0F4M+LvOHxhgIe78WXdzMQBE30Plrtx2si4oIiDu1NSTFtaMBQqcaxsRIiW7FxbCxAoxnX1KBJJIBKBSgUi44O85YWA0/PlfH5HE3y88Xns2Q4avXJaSvUBCtU8mvoBLly2RUCbcFIhZiIcH9M/NkDVVVoEglLp28UGd+WVVWYvj7jR4/QPT3Y/n4MjWbZ2SlymZsgV8B7nblGbmsTpNbSQ+ZyuWZmZjwej8vlZth6/lRce+dsQqTv1TevJua5E1wu91pu4VdqlKolk6u+tgUjZDGRNf21U1NNGxsBCgXT0yMdNezAgJ6ZGUAmmzx5AlCpWDodoFKNYmPFgKuC8cYqtJ1C4/F4s7zZmJiYlZ7v383PvVlY/PiWv/vll3l+A4KgSUrNJHW1KbC7KxHKqgiCQEDduWPW1ATQaFIjWzIImjx9atnZiaXTMf39ll1dIqmNdFdMUmrEGY7a3bt37969m5SUJLSuZWdn8xtlFAjsHyF3dj4ur+XxeF9473k8HvdF/1dq1DppXSu4i4yMRN25Y9bYCFAoKBRKeM1KSNgAtf5+MyLR7PlzbH+/1cAAQCaLux2ZpNaK8/pzTTV/UGhdsztvV1xcvLJ+iXu2giBokvZkS6wUGalz86ZxXZ24dU3CsgWamzE0mmljo3FdHYZGs2IwMDQaCoUSvn1zcDhEo9kexIjLZ31qOzP6V6jxRSKRmEymJFeDyb6nm7dCQACCQNhz+bLx48eWbW0YGm2fhYWIxb621sDZ2cDZGQ4cnQ6QycZ1dQdqagAKxYrBwPT1GaelraJWVnaIRrNoabFoaBCXkjR3HhIKgqBJsGHzVsDj95qaqkZHGxUU2HV2YslkTH+/EYGw0RXNisHAUKkWbW2G9+8bV1cDZDJ2YAADghbt7Uu8mpute3oOksnmTU2mdXUGRUU9jWUiU4KjlpSUlJSUdPbsWQiCft24IAji9D/fvBXweIXAQCSBoJOc7NrSgmOxbPr6sCC4oeXMisHA9PdbdnYa19XpxcYa19Ye7O+3FphrRnFxtjQatrvb4vlz48pKvdxcreRk5RMnRKYk6Xu5kt+mCVYoh05cdpNAWzDSJCayFEf4+Sng8QoBAcrOzsrHjxtmZkaOjR3/618d6HT+9VTfwQGeF7+DVX8/QCKZ1NcbFBXtu3fP9NkzI2dnu+FhgEpFoVBAc7MtlWre3GzR0GBYWqqblaVx/jyCQFB0deXQm9Za0gqVcq4NNC+Z3vy1LRihi4ksxxWDg3UMDRUCAuT9/OT9/VVOnjTPywsZGAiZmLDv68NQKBgQxA4MoJ88EcfLjsVyHB626u09UFBgUFysm5mp/9NPNiQSCoVyHBtDk8lWJJINmWxOJJrV1xsUF2unpanFxSkGB8t5eMh6ecl6eXHozUJeh9rnD57V1TVSr2ucgVYOY7UHYHdXIgOtHEYrvasOGRioGBQk7+8v7+cnh8MpurkpRUbqJCejHz60a262am21aG21IpOdRkZcxsedxsbsRkbsWCyn0VHP6Wn8mzdH373Dv3plT6EcqKzUz8/XSUvbk5RkWFYWNjtraGzs8+LFQQplf1CQJZFoXFm57949ratXlU6cQLi783ktURtoFfI61O7fyXv8uELqCp1itk8x2r9ume3CEZFxxlJbMShI3clJMSREzcZGx9BQDoeT9fRUw2IVg4PV4+N10tL0Cwr2P3xo+uSJbXd34MxM3K+/3uTxynm8Zzzecx4v55dfjk5PoxsaDEpLdbOy9l6/rnHs2N6UFKP79yNevTI8cMCXwzFvajIrLNxfXo7KztZISECGh6tZWwsik/Xy8nBz/poVo32K0S5phUpLrXMzRoSGIsPCEEePKuDxmhYWcjicjIeHjJvbbhcXWU9PZFiY+g8/aCUn62Zl7cvLO1Bebllba9fa6tbbe4RMdmxrQ9fUGBYW6mRmaiUnq8fHK0VGqp87p52aalha6gmCKD09oKxs//37+/LytFNS1GJiFAID5XA4vgWpqdjYCCUm6dVAugqdGuyS2vFnTyIIBGRYmM7+/YrBwfJ+frKenjLu7rsPH97l7LzTwUHG2lrW0xNBIKhER2skJGhdvbr3xg2dmzd1MjJ0bt7UTkvTunpV4+JFtbg45agoJV9flago7YAA3Vu39IuKzKuqzKur95eVoe7c0bp6VTkqir8CiKR2MvKoUG6SzrXFjQuCoKkhktTmTzRkWBiCQFAKDFTE4+W8vfcaGe12dd3l7LzT3v4vtrZ/sbX9y6FDWoaGCo6O8n5+CsHBCAIBER6OCAtDhIYigoOVvLwUAgIUgoKUjh/XSEjQTk3Vy83Vz8gwKCral5+vm5io+eOPyIgIhIuLIDIhamtzW4cakdiwqQpl9UptBIGADA/ng0NGRCDDwhQCAmQ9PHYfPrzLyWmnnd0KtZ12dku2t99pb7/L0XG3i4vMkSOyXl7yvr4KgYGIo0fVzp7V/PFHnfR01N27evfuoXJytG/e1ExMRIaFCfESoiYyt/WuoTM9Dx485P89dKOCIGh6mLJsskBbMLI2TpkepvBrkz/RkOHhyIgIZESEzoEDCoGBsp6eMocPy9rY8JGJoObktNvVVcbdXQ6Hk/fzQ4SGqpw8qX7u3J7Ll7Vv3NBJT0eZmGglJ6vFxirg8SKR8alp798/PUwW6W/7RDU9QpXOOvv3L020ZWR8K+PxikFBcj4+MkeO7HJ2lrG13auvv5aazOHDsh4ect7eCni88vHjqmfOqJ87p3np0p7Ll/ckJqrHxyufPKljZCQOmRwO19v+FCY9OGpzc3Nzc3N0Ol3qCp0e6ZsehfXaDiN9OhYWKBQKGR6OIBAEkSEjIvgotU1NFQIC5Ly9+ReH3c7Ouxwddzk47HRw2OngsMvZWcbNbe+BAwp4PCIsTDkqSjU6Wu3sWfW4ONWYGJVTpxChoUgnJ3G8FDw8pkf64A1HjdTVNQt2Z1+8KD21sf7p0f6v27F+4ciauK6BgealS6p4PDIsTNPODhkRoXTsmCAyBIGACA1VDA5G+PqqW1vLeXvL8m9HXF13OTvvdnZWtbSU8/JS8PdX8vNDRkQoR0UpnzqlcuqUclQUMiICpirlcDh1LHZ6tH9dw346pq1tmALdPn9O6gqdGRvYkPULCvZlZu69fl3l1Cn+RUDp2DG+v1I7elQxJEQxKEgBj5f395f39ZXz9pb19JR3cUGhULIeHnI+PgoBAYrBwQgCQWl5BGR4uGJwsAYaDYOsj9QiYZ6wn1gYGNjkujbDZsywmTNsxnKDuSayEmca19ebPnu2z9lZNzNTMyEBhUIhIyJ0T582OHNGNLXAwCVqOJy2oaG8r69CQIBiUJBicLBiSAji6FEEgaDu5safmwoBAQpHjsAgYw/SlrNa33DUiEQikUgsLy+XukJnxgclsWF5uWV3t0lqqnlLi2ldnXFZmcHt23t+/FHl9GlVf3/BubZUnsvUNKysFIOCEAQC8tgxpchIpchIXUNDpYgIfiErhoYiQkMVg4IQ7u4wvBAuLhLmueJ1rqEDAwObuV+bmWCta7Pnzw9ER2NoNIsHDyw7Oy2IRNvm5vS2NvOiIr3UVPX4eNXoaE03N81Dh5Zsa6vh4oKMiFA+cUL1++/VYmLUzp5Vi41Vi4lRjY5WOX1a6fjxpSkZFKQQEKBqYwODLDM9RZIkhbwOtcHZF5uq0MkRGFuWlFh0dJhcvYqh0fgGyGTLjg77nh5cf78/jebS0GCal4dKTd17+bLmhQvq8fHq585pxMSonzunkZCgeenSnsREbTx+T2Ki5qVL6ufPqx8/rnL6tGpAAB+ZvJ+fkoMDDLJbGanwGYrzOtRaW1vLb6SsfGJhQ4Ig6AVnVJzNiESDI0cwfX1LFgAHdHU59fWFTk7+8PbtSQ7Hp6fHtqrKoqTEKDdXLytLLzMTlZmpm5Wlm5Wle+uWbliYdmqq1tWrmhcu8B85kWFhikFBct7eMLzkcDiY3Nb1+t8+Ky0tk7pCX3DYqzy11JBxc8OAIAYERVCjUgEyGUMi2VEo/uPj38/NJSwsxL15E85me1Mozq2tts+eYevrTR49MiwtNSgq0jtxQicjY++1a5oXLqieOYMMC1OEvbeQw+FsPdyFE9ugv+2zwYvpiSVPTay0WUy6jJubzJEjMOBMkpPRvb2Ynp5DNNqRwcHgqamI168jX7+OePny6PS0z9DQwbY249pao0ePDIqKdG/f3nvtmlpcHDIiQgOLhUdWVfHoxdTEJr0ONe+jPtevX98ENc6yJ5e3k1RKD5+ako3NKmrL4AAqlW/V8DtAb68liYTt6bGhUh1A0JlOd2Uw7Pr6sB0d5o2NBx4/1i8o0E5P10hIQIaFqdjYKNnZwVXl9OSWeJ1vcHfTwPZjIVJX6OzM1OzM9OzMlKBRKBSfmsyRI3KurkLTzUqAGv/DPwCFgiYSzQsL9czN9czNgd7egzSa78SEQ2fnvvx87bQ01ZgYXQODlXcpRPLSMTAQSmMz/rbv5c6+mFlrXT29FWqHcbjZFzNrp9vXGUehABQKQCYDZLLZvXtWNJrH2Bg6LMyWSNTLzdVMTEQeOybn6Sn4dthaZHW1NSIzkdrfdl2bFaWUlBQ+NcGg0cmToqlRqQCFYpKSYtXX58FmR87N2be36xcUoExMVE6d0sBihd7jX0tNZA6b1Pp3ucWPpf8b1UazWQvOKCoKQ6MdHh2NfPsWz2YDdXW6mZnq8fGI0FAlB4e1yASpaQDAt0A2uy41UmBCfkm+9BUqlQx9fDA0mp6pKaavz2NyMnp+PmJqyrqhAXX7tubFi8jwcF19fZG8BKmNjIxsLSlBSVqhv2xcUlPjKzAw8PzCQuzcnH1bm35urlZSknJUlNLhwzC8+EY6OW0VHXH6O6xrkis4OFgvJ0fryhXlqChNLFZ29aov0lQqdUu4wAuOWvr1K8muiu76/wdB0NuNa/PUZmdnVb7/XgGPl/X0XLJ4Xoqurpt/OQkFRy0nO3uWBt69HQNB0LVQV95vX74Mdn0e7FpsK/082PllsGv+0y8i/XmY8uXj+y2h9pUXLDU2m73515JcklZo7Y3vW7u6a3JvCLq1q1uk6zN+6G199rehhnR03PyrbFTr/E+s6upqwW9wC2lqWeI6bD4/eTc3GGSbH186SUpN5P8DgPeWUEOhUCKpFRYWbn5wqSUptaFBxsTY0NAgY4Q1ODTIYI8MjYyOsAYZ4+xRcd4Samg0Woiarp7e5ofdpCSl9onL3ai3hNqswNKGdHDYkgE3L0mpcWd6GsrLx9lDM9D7yYlxSbxV1GZnZ0tKSrZqqC2RpNSk+0zR3/u3+1aSlBr7J3fb6+0TjakLHz++/Oub6SkOjKc4k9NTnG1q0JON69+U2vC2ROnNmzdw1MoKiupL8iiD/V0DwxXtjKrOIVrr4+Hh4Q768DCDeiujqLKD2fikvrygaHh4OLfweeqjlmdk5k+PnjysaGivLSUP0YeHh4dJdV3gcFF9e0l2zt/3t90qrUMtX3aHoAtkdxSsjuTL7siXWe3VwaVThHZXBpTZUSCzavCvlllloVOEOkuSp7jO+WvyEZuSgOGo8bYlRtvUpNE2NWm0TU0aCcH5f8my9u+XFC00AAAAAElFTkSuQmCC

无忧008 发表于 2012-7-16 18:30:47

图都上传不了,{:soso_e127:}   要的加我QQ吧,1985181575    发我邮箱也行,交个学UG的朋友{:soso_e181:}
页: [1]
查看完整版本: UG一步可成性分析教程视频版和图片版